
UNIVERSIDADE FEDERAL FLUMINENSE

ESCOLA DE ENGENHARIA

MESTRADO EM ENGENHARIA ELÉTRICA E DE TELECOMUNICAÇÕES

FAULT DETECTION AND DIAGNOSIS OF SOLAR-POWERED WIRELESS

MESH NETWORKS THROUGH MACHINE LEARNING

VINICIUS CORRÊA FERREIRA

NITERÓI

2016

Universidade Federal Fluminense

Vinicius Corrêa Ferreira

Fault Detection and Diagnosis of Solar-Powered

Wireless Mesh Networks through Machine

Learning

Master thesis proposal submitted to the
Electrical and Telecommunications Engi-
neering Graduate Program of the Universi-
dade Federal Fluminense as a partial require-
ment for obtaining the title of Master of Elec-
trical and Telecommunications Engineering
in Telecommunications Systems.

Supervisor:

Prof. Ricardo Campanha Carrano, D.Sc.

NITERÓI

2016

Ficha Catalográfica elaborada pela Biblioteca da Escola de Engenharia e Instituto de Computação da UFF

F383 Ferreira, Vinicius Corrêa

 Detecção e diagnóstico de falhas em redes em malha sem fio

alimentadas por energia solar utilizando aprendizado de máquinas /

Vinicius Corrêa Ferreira. – Niterói, RJ : [s.n.], 2016.

 73 f.

 Dissertação (Mestrado em Engenharia de Telecomunicações) -

Universidade Federal Fluminense, 2016.

 Orientador: Ricardo Campanha Carrano.

1. Sistemas de telecomunicação móvel. 2. Rede sem fio. 3.

Aprendizado de máquina. I. Título.

CDD 621.38456

Agradecimentos

Agradeço aos meus pais, Fernando e Sueli, que fizeram da minha vida o projeto de

vida deles. Todo o meu amor e gratidão.

À minha namorada, Flavia, pelo companheirismo, suporte e incentivo em todos os

momentos.

Aos meus irmãos na amizade, que estão sempre presentes na minha essência e formação.

Ao meu orientador Ricardo Carrano, amigo e mentor, por generosamente comparti-

lhar seu conhecimento e pela sua paciência e dedicação.

À equipe do Laboratório MidiaCom, é um enorme prazer aprender e trabalhar com

vocês.

A todos que direta ou indiretamente participaram da minha formação, o meu muito

obrigado.

Abstract

This thesis proposes a machine learning based automated fault detection and diagnosis

(FDD) on solar-powered wireless mesh networks (SWMN). The inherent complexity of

WMNs makes it difficult to find a fixed model solution for FDD. In addition, manual

inspection is extremely costly and requires a highly skilled workforce, thus becoming

impractical as the problem scales. A predefined dictionary of failures, based on previous

experiences, was used to solve those problems (modeling and scalability) and turn the fault

detection and diagnosis task into a feasible pattern classification problem. The knowledge

discovery in databases methodology was evaluated to solve the problem. Each steps of

the methodology, as database population, problem characterization, data processing, a

study of classification algorithms suitability for the task and results interpretation were

performed and evaluated. At the end of this quest, the Support Vector Machine presented

the best results and was selected to be implemented and tested in our future works.

Resumo

Este trabalho descreve uma solução para um módulo de detecção e diagnóstico de fal-

has autônomo para redes em malha sem fio utilizando técnicas de aprendizado de máquina.

A complexidade inerente às redes em malha sem fio dificultam a solução do problema

atravs de modelos matemáticos ou probabiĺısticos. Além disto, inspeções manuais são

extremamente caras e requerem uma força de trabalho qualificada, se tornando inviáveis

conforme o problema escala. Utilizou-se a experiência prévia da equipe do projeto ReMoTe

para definir um dicionário de falhas e transformar o problema de detecção e diagnóstico

de falhas em um problema de classificação de padrões. Desta forma simplificou-se tanto o

problema de modelagem quanto o de escalabilidade da solução. Os passos da metodologia

de descoberta de conhecimento em base de dados foi seguida e avaliada, como a populao

da base dados, a caracterizao do problema, o estudo de algoritmos de classificação mais

adequados a tarefa e a interpretao dos resultados. Ao fim desta procura, a Máquina de

Vetor Suporte apresentou o melhor resultado e foi escolhida para ser implementada e

testada em trabalhos futuros.

Keywords:

1. Network Management.

2. Wireless Mesh Networks.

3. Machine Learning.

4. Fault Detection and Diagnosis.

Abbreviations

AI : Artificial Intelligence

ARFF : Attribute-Relation File Format

BACnet : Building Automation and Control Networks

CF : Confidence Factor

CRs : Cognitive Radios

DTM : Decision Table Majority

ELM : Extreme Learning Machines

EM : Expectation-Maximization

FDD : Fault Detection and Diagnosis

IDS : Intrusion Detection Systems

IP : Internet Protocol

KDD : Knowledge Data Discovery

KKT : Karush-Kuhn-Tucker

k-NN : k-Nearest Neighbors

M2M : Machine-to-Machine

MAC : Medium Access Control

Mac OS : Macintosh Operating System

MAD : Módulo Autonômico de Diagnósticos

MANETs : Mobile Ad Hoc Networks

ML : Minimum Loss

NLOS : Non-Line-of-Sight

ODM : Oracle Data Mining

OSLR : Optimized Link State Routing

PC : Personal Computer

PDA : Personal Digital Assistant

QoS : Quality of Service

RFID : Radio Frequency Identification

SVM : Support Vector Machine

SWMN : Solar-powered Wireless Mesh Networks

Abbreviations vii

VANETs : Vehicular Ad Hoc Networks

WEKA : Waikato Environment for Knowledge Analysis

WLAN : Wireless Local Area Network

WMNs : Wireless Mesh Networks

WSNs : Wireless Sensor Networks

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Related Work 5

3 Wireless Mesh Networks 8

3.1 WMNs Architecture . 9

3.2 Characteristics . 10

3.3 ReMoTe’s Network . 12

4 Machine Learning and Fault Detection and Diagnosis 16

4.1 Machine Learning . 16

4.1.1 Supervised learning . 17

4.1.1.1 Classification and Regression 18

4.1.2 Unsupervised Learning . 19

4.1.2.1 Clustering . 19

4.1.2.2 The Association Problem 19

4.1.3 Reinforcement Learning . 20

4.1.4 Other Learning Methods . 20

4.1.5 Available Tools . 21

4.1.5.1 IBM SPSS Modeler . 21

Contents ix

4.1.5.2 Oracle Data Mining . 22

4.1.5.3 Weka . 22

4.2 Fault Detection and Diagnosis . 22

4.2.1 Classification algorithms . 23

4.2.1.1 Statistical Classifiers . 24

4.2.1.2 Linear Models . 25

4.2.1.3 Ruled-Based Models . 27

4.2.1.4 Instance-Based Models . 28

4.2.1.5 Divide-and-Conquer Models 28

4.2.2 Algorithm’s Performance Evaluation 29

5 Methodology 33

5.1 Populating the Database . 34

5.1.1 Databases . 38

5.2 Selecting Data . 39

5.3 Preprocessing and Data Transformation 40

6 Results 43

6.1 Problem Description . 43

6.2 Algorithm Evaluation . 45

6.2.1 Naive Bayes . 46

6.2.2 Decision Table . 47

6.2.3 k-NN . 47

6.2.4 SVM . 48

6.2.5 C4.5 . 49

6.3 Results Validation and Interpretation . 50

7 Conclusions 55

Contents x

References 57

List of Figures

1.1 Wireless Mesh Networks. 2

3.1 Infrastructure WMN. 9

3.2 Client WMN. 10

3.3 Hybrid WMN. 11

3.4 Topologies of the Production network and the External Mesh Network. . . 13

3.5 ReMoTe’s testbed node - External Mesh Network node. 14

4.1 SVM example. 25

4.2 DTM example. 28

4.3 k-NN example. 29

4.4 Algorithm Performance Measurement Example. 30

5.1 An Overview of the Steps That Compose the KDD Process [17]. 33

5.2 CPU Load Average during High Processor Usage test. 34

5.3 Available Memory during High RAM Memory Consumption test. 35

5.4 Battery Voltage in the Battery Failure test. 36

5.5 Solar Panel Current in the Low Solar Panel’s Efficiency test. 36

5.6 ML-Metric in the Antenna Misalignment test. 37

5.7 ML-Metric in the RF Cable Connectors Defect test. 37

5.8 Database class distribution. 39

6.1 Decision Table accuracy per observation interval. 44

6.2 k-NN accuracy per k parameter. 48

6.3 SVM accuracy per kernel function with C = 1. 48

6.4 SVM accuracy per C parameter with linear kernel function. 49

List of Figures xii

6.5 C4.5 accuracy per confidence factor (CF). 50

6.6 Overall classifier comparison. 51

6.7 C4.5 Validation Performance. 52

6.8 SVM Validation Performance. 53

List of Tables

4.1 Confusion Matrix Example . 32

5.1 Database Class Distribution. 38

6.1 Selected attributes for algorithm evaluation. 45

6.2 Naive Bayes F-1 Measure. 46

6.3 Decision Table F-1 Measure. 47

6.4 SVM F-1 Measure. 49

6.5 C4.5 F-1 Measure. 50

6.6 SVM Confusion Matrix . 54

Chapter 1

Introduction

In the last twenty years, mobile communication systems and its services were of great

relevance to the general population and experienced continuous growth. In 2014, mobile

data traffic accounted for 4% of total IP traffic and it is estimated that it will grow three

times faster than IP traffic from non-mobile devices, reaching 14% of total IP traffic in

2019 [10].

The need for broadband network connectivity gets a further boost with the growth

of mobile Internet-connected devices, ranging from smartphones, tablets, and laptops,

to sensor networks and machine-to-machine connectivity (M2M). This growing demand

requires a greater investment in network infrastructure.

As various wireless networks evolved into the next generation to provide better ser-

vices, a new technology has emerged: the Wireless Mesh Networks (WMNs). WMNs are

wireless networks that interconnect a fixed set of nodes able to pass data packets to each

other, directing them to their destination through multiple hops using wireless links.

The WMN Infrastructure/Backbone can be built using various types of radio tech-

nologies, in addition to the mostly used IEEE 802.11 technologies. The mesh routers form

a network of independent self-configuring, self-healing links. With gateway functionality,

mesh routers can be connected to the Internet. This approach, also referred to as infras-

tructure meshing, provides backbone for client nodes and enables integration of WMNs

with existing wired networks, through gateway/bridge functionality in mesh routers. A

possible WMN architecture can be observed in Figure 1.1.

WMNs’ advantages are: the topologies are self-organized and self-configured, with

nodes automatically establishing and maintaining mesh connectivity among themselves.

This feature brings many advantages to WMNs such as low implementation cost, fault

tolerance, and reliable service coverage [3]. Due to these characteristics, WMNs are being

1 Introduction 2

Figure 1.1: Wireless Mesh Networks.

used in a wide range of applications, such as: broadband home networking, community and

neighborhood networking, enterprise networking, metropolitan area networking, vehicular

networks, automation and control systems, health and medical systems, security and

surveillance systems, etc [3].

But these advantages are balanced by the difficulty of its management. This is be-

cause a network is a complex system with many inter-dependent elements that affect its

behavior. These elements include network protocols, traffic flows, hardware, software and,

most importantly, the interactions between them. Troubleshooting a multihop wireless

network is even more difficult due to unreliable physical medium, fluctuating environmen-

tal conditions, complicated wireless interference, and limited network resources. There’s

no heuristic or theoretical technique that captures these interactions and explains the

behavior of such networks yet [15].

In addition to wireless medium uncertainties, some WMNs are installed in isolated

sites. This makes physical access to nodes difficult and requires an alternative electric

powering system, increasing system’s complexity. One example of a highly complex mesh

network set in isolated sites is the solar powered WMN deployed for the ReMoTe project

[45]. It consists of 41 nodes for supervision and communication purposes installed along

the power transmission line that connects the hydroelectric plant in Machadinho to a

substation near the city of Campos Novos, in the south of Brazil.

The high complexity of the network itself, coupled with the difficulty of access resulted

in the search for automated management methods in order to improve reliability and

reduce costs and downtime.

To provide automated management of systems some features must be developed.

These features serve to indicate when the system enters in undesired or unpermitted states

and also to take the appropriate actions in order to maintain the system’s operational

state, avoiding or reducing damage and accidents. These features would be responsible

1 Introduction 3

for three tasks [28]:

• Monitoring: Measurable variables are checked with tolerance intervals, and alarms

are generated for the operator.

• Automatic Protection: In the case of a dangerous state, an automated control

function initiates an appropriate counteraction.

• Supervision with Fault Diagnosis: The Monitoring task supplies the network

manager with raw data. In the Supervision task this is transformed in information

by processing. Features are calculated and if any significant change in these features

is detected, a fault diagnosis is performed and decisions for counteractions are made.

In the ReMoTe project, some of these function were already implemented in two

modules:

The monitoring function is performed by the MeshAdmin tool [13], an integrated

platform for WMN management, that includes modules for collecting, storing and dis-

playing nodes’ management data. Its interface allows the network manager to observe the

evolution of the collected data graphically. MeshAdmin also provides a warning module,

which detects and indicates the occurrence of failures. Although MeshAdmin facilitates

the detection of failures, the actual diagnosis must be done manually.

For the automatic protection function, a watchdog software was developed. This

function stands on a local microprocessor, which oversees dangerous energy states and

enables/disables the power supply, protecting the node. The watchdog check the nodes’

responsiveness through serial communication, rebooting the node if it is unresponsive.

The supervision with fault detection and diagnosis (FDD) is not yet carried out by

MeshAdmin. Thus, the intention to develop an autonomous module for that task, the

Módulo Autonômico de Diagnóstico (MAD), a module that is able to detect and diag-

nose faults automatically and its methodology could be applied not only to the ReMoTe

network, but also to similar WMNs.

Fault detection and diagnosis is a widely studied field in engineering. This problem

is typically solved using one of three methods: the analytical solution, the application of

a statistical model or the use of artificial intelligence (AI) [14]. Given the difficulties to

model a WMN, their behavior, usage, and possible changes to the system, both the ana-

lytical solution and the application of a particular statistical model becomes impractical.

Therefore, the AI approach was selected for the development of the module.

1 Introduction 4

For five years since deployment, ReMoTe nodes presented different modes of failure

that could only be diagnosed through costly and sporadic physical inspections, which

often require the shutdown of the transmission line along which the nodes were installed.

With those modes of failure and all those years of measured data stored by MeshAdmin

in mind we focused on a machine learning approach.

In order to develop MAD, it was necessary to define a method and a specific AI

technique to perform the task of FDD. This works proposal is to use machine learning

technique. To this end, the knowledge discovery in databases methodology was discussed.

This methodology requires an understanding of the problem, of its most critical variables

and an adequate data representation, compatible with classification algorithms inputs.

These steps must be carefully followed to achieve a satisfactory accuracy. After those

steps, a group of classification algorithms were tested and evaluated.

To achieve this goal several trials and tests were performed as part of this process [18].

This work describes the employed methodology as well as the difficulties faced during the

development of MAD, and how they were overcome.

The text is organized as follows: In Chapter 2 an overview of related works is given;

We review WMN management and monitoring and also provide a description of the

SWMN nodes used in the ReMoTe project in Chapter 3; We provide an introduction

to the process of knowledge data discovery (KDD) and the problem of fault detection

and diagnosis in Chapter 4; In Chapter 5, each traditional KDD step taken is discussed

in the context of developing MAD, including populating the database, data treatment

and preprocessing, and the description of a set of algorithms to perform the knowledge

extraction; We then provide an objective comparison of the performance of each algorithm

in providing accurate diagnosis in Chapter 6; Finally, conclusions and future work are

presented in Chapter 7.

Chapter 2

Related Work

There is a wide range of applications and areas of research that uses machine learning

techniques in computer networks [20][1][5]. Some traditional network functions are being

implemented using machine learning seeking to improve network performance.

Usual tasks in network management and operations take advantage of machine learn-

ing tools in their solution[1]. A function in which machine learning use is widespread

is network security, more specifically intrusion detection systems (IDS). In [6] IDSs are

presented, both following a centralized and a distributed approach. Some approaches are

presented to model a system’s intrusion, these are: game theory/reinforcement learning,

rule-based algorithms and statistical analysis of network data.

Classification techniques, clustering and state machines solved through reinforcement

learning are shown in [1] and [20] as solutions for tasks as: routing, data aggregation,

objects location and pointing, event detection and queue processing, link layer develop-

ment, security and intrusion detection, as well as QoS functions, data integrity and fault

detection.

Ad hoc networks, specifically Wireless Sensor Networks (WSNs) and Mobile Ad hoc

Networks (MANETs) may be used to monitor dynamic environments, as in Vehicular Ad

hoc Networks (VANETs). These scenarios, in which system’s response change rapidly over

time, due to external factors or by the system’s design, may benefit from machine learning

techniques to adapt to these changing conditions, thus eliminating system’s redesign.

Machine learning also inspires many practical solutions that maximizes resource use and

increases network’s life [1].

One of the critical issues related to maintenance and failure prevention in WMNs is

their management. Some of these issues are addressed in [15], in the context of ReMesh, a

pioneering WMN project. It presents methods to capture different statistics and metrics

2 Related Work 6

from network nodes, and visual tools to aid in failure detection.

The MeshAdmin tool [13] is an integrated platform for WMN management, devel-

oped for the ReMoTe project. The platform includes modules for collecting, storing and

displaying nodes’ management data. Its interface allows the network manager to observe

the node’s behavior in a graphic form, based on collected data. MeshAdmin also provides

a warning module, which detects and indicates the occurrence of failures. Although Me-

shAdmin facilitates the detection of failures, the actual diagnosis must be done manually.

An automated FDD technique using simulation models is proposed in [40]. The work

uses the monitored network metrics to feed a simulator and compares the performance of

the simulated model to the network’s gathered data. If there is a significant difference,

the proposal systematically injects faults in the simulated environment. When the perfor-

mance of the simulator, having been inserted an specific fault, gets close to the network’s

performance, the system assumes that particular fault as the diagnose. The downside is

a possible lack of information in a failure mode. This technique depends on a complete

set of network metrics. It also relies on the accuracy and efficiency of the simulator.

Sympathy [42] also deals with FDD in sensor networks. The proposed solution relies

on connectivity metrics, packet flows and node operation information. The collected data

is fed to a decision tree. This decision tree was generated based on empirical knowledge

of an expert to diagnose the cause of the problem, without machine learning usage, to

emulate the experts’ steps.

Other studies employ machine learning to perform diagnosis. Among them, [50] uses

information from the node’s routing table and the RIPPER algorithm [11], a classifier

based on rules for intrusion detection.

Due to the limited availability of the spectrum and its inefficient use it’s desirable to

develop a new paradigm of communication that explores the wireless spectrum in an op-

portunistic way. Thus, dynamic spectrum access was proposed to solve these inefficiency

problems using intelligent radios, known as Cognitive Radios (CRs). The CRs take ad-

vantage of unused frequencies, often referred to as holes in the spectrum or blanks, both in

time and in space [33]. CR has a great potential in research for machine learning applied

to spectrum management and for achieving efficient spectral use.

A CR must manage the spectrum properly, taking into account the communication

requirements of its users. The spectrum management is divided in three stages: spectrum

sensing, spectrum characterization and spectrum decision. Machine learning techniques

2 Related Work 7

are used in all stages [5].

Several sensing techniques were developed and machine learning techniques were ap-

plied to increase spectrum sensing (also called spectral consciousness) performance. The

spectrum usage history is used to predict its future availability and the sensing schedule is

modeled as a Markovian Process. Reinforcement learning is used to predict the spectrum

usage and check only the most likely to be available, reducing the spectral sensing search

space [49].

Besides spectrum availability, other parameters are defined and used to characterize

a channel, such as: interference, path loss, wireless channel loss, link layer delay, and

the spectrum sensing and characterization delay per se. Neural Networks and Support

Vector Machine are used to classify the channel as suitable or not to use, according to

a given Quality of Service (QoS) requirement. The final step, the spectrum decision, is

also modeled as a Markovian Process and the optimal policy found using reinforcement

learning [5].

Differently from previous proposals [40][42][50], the solution presented in this work

employs a completely autonomic process for fault detection and diagnosis on an individual

node level, based on machine learning techniques. The MeshAdmin monitored data will

be used to feed MAD and a set of defined failures, as the battery fault for example, can

be diagnosed without human aid. This approach has the advantage of not requiring an

analytical model or static computational approaches. It also seeks an increased diagnosis

accuracy, reducing the costs and workforce required for network maintenance.

Chapter 3

Wireless Mesh Networks

As stated in the Introduction, Wireless Mesh Networks (WMNs) are networks that

interconnect a set of nodes that can transmit data packets to each other, through multiple

hops via wireless links.

In these networks there are two types of nodes: mesh routers and mesh clients. Other

than the routing capability for gateway/repeater functions as in a conventional wireless

router, a wireless mesh router contains additional routing functions to support mesh

networking. To further improve the flexibility of mesh networking, a mesh router is

usually equipped with multiple wireless interfaces built on either the same or different

wireless access technologies.

Compared with conventional wireless routers, wireless mesh routers in a WMN can

achieve the same coverage with much lower transmission power through multi-hop com-

munications. Optionally, the medium access control (MAC) protocol in a mesh router is

enhanced with better scalability in a multi-hop mesh environment and energy manage-

ment, specially in when there is energy constraints as in a solar powered WMN, achieved

through scheduling strategies [7][8].

In spite of those differences, mesh and conventional wireless routers are usually built

on a similar hardware platform. Mesh routers can be built on dedicated computer systems

(e.g., embedded systems) and look compact, or they can also be built on general-purpose

computer systems (e.g., laptop/desktop PC).

Mesh clients also have essential functions for mesh networking, and thus, can also

work as a router. However, gateway or bridge functions do not exist in these nodes. In

addition, mesh clients usually have only one wireless interface. As a consequence, the

hardware platform and the software for mesh clients can be much simpler than those for

mesh routers. Mesh clients have a higher variety of devices compared to mesh routers.

3.1 WMNs Architecture 9

They can be a laptop/desktop PC, pocket PC, PDA, IP phone, RFID reader, BACnet

(building automation and control networks) controller, and many other devices.

3.1 WMNs Architecture

The architecture of WMNs can be classified into three main groups based on the

functionality of the nodes:

• Infrastructure/Backbone WMNs: This type of WMNs consists of mesh routers

forming an infrastructure for clients that connect to them. The WMN infrastruc-

ture/backbone can be built using various types of radio technologies. The mesh

routers form a mesh of self-configuring, self-healing links. Featuring gateway func-

tionality, mesh routers can be connected to the Internet. This approach, also re-

ferred to as infrastructure meshing, provides backbone for conventional clients and

enables integration of WMNs with existing networks. An example of this type of

architecture can be observed in Figure 3.1. Infrastructure/Backbone WMNs are the

most commonly used type. For example, community and neighborhood networks

can be built using infrastructure meshing. Typically, two types of radios are used

in the routers, i.e., for backbone communication and for user communication, re-

spectively. The mesh backbone communication can be established using long-range

communication techniques including directional antennas.

Figure 3.1: Infrastructure WMN.

• Client WMNs: Client meshing provides peer-to-peer networks among client de-

vices. In this type of architecture, client nodes constitute the actual network to

performing routing and configuration functionalities as well as providing end-user

3.2 Characteristics 10

applications to customers. Hence, a mesh router is not required for these types of

networks. In Figure 3.2 there is an example of this architecture. In Client WMNs, a

packet destined to a node in the network hops through multiple nodes to reach the

destination. Client WMNs are usually formed using one type of radios on devices.

Moreover, the requirements on end-user devices is increased when compared to in-

frastructure meshing, since, in Client WMNs, the end-users must perform additional

functions such as routing and self-configuration.

Figure 3.2: Client WMN.

• Hybrid WMNs: This architecture is the combination of infrastructure and client

meshing, as in Figure 3.3. Mesh clients can access the network through mesh routers

as well as directly meshing with other mesh clients. While the infrastructure pro-

vides connectivity to other networks such as the Internet, Wi-Fi, WiMAX, cellular,

and sensor networks, the routing capabilities of clients provide improved connectiv-

ity and coverage inside the WMN.

3.2 Characteristics

The WMNs have some basic characteristics that are pointed out bellow:

• Multi-hop wireless network. The use of multiple hops to achieve a destination

is a basic characteristic of WMNs that enables an extended coverage of the network

and provides non-line-of-sight (NLOS) connectivity. The multi-hop wireless charac-

teristic imposes the use of a routing protocol suitable for the dynamic environmental

3.2 Characteristics 11

Figure 3.3: Hybrid WMN.

changes and links stability. Therefore, a more sophisticated and complex routing

protocol must be used which incurs in a higher management complexity.

• Support for ad hoc networking. The flexibility of network architecture as viewed

in Section 3.1 provides easy deployment and configuration. This characteristic is

responsible for the low upfront cost and gradual growth of a WMN. From the man-

agement point-of-view this flexibility increases even more the network complexity.

Various wireless links can be created and vanished with a node deployment, generat-

ing connectivity problems and highly dynamic routes. Also, a more generic protocol

must be used to deal with different architectures and devices in the network.

• Dedicated routing and configuration. Despite the ad hoc networking character-

istics, Infrastructure and Hybrid WMNs have dedicated mesh routers. It decreases

the load on end-users, which provides high-end application capabilities, client mo-

bility and less energy constrains.

• Interoperability and integration. Through gateway or bridge functions and

different interface technologies use WMNs enables clients to use its infrastructure

as a backhaul and access to existing networks and services as the Internet. Here

again the network complexity is increased to support the different services requested

by the users. The network protocol has to be interoperable with these different

technologies.

• Multiple radios. Mesh routers can be equipped with multiple radios in order

to separate the access and backbone traffic in the wireless domain. This improves

network capacity and facilitates the management.

3.3 ReMoTe’s Network 12

• Mobility. Mesh clients might be mobile devices, which imposes an additional

challenge to routing and configuration in client and hybrid topologies.

• Power-consumption constraints. As stated before, WMNs can be used as access

networks in isolated sites. Therefore nodes’ energy supply depends on batteries

and alternative power sources increasing system’s complexity and challenges in the

network management.

3.3 ReMoTe’s Network

The ReMoTe project uses an infrastructure based on WMN. While the ultimate goal

is to deploy MAD at the production network of the ReMoTe project, in the development

phase prototypes were evaluated in a WMN testbed located on one of the campi of UFF,

hereinafter referred to as External Mesh Network.

Both the production network and the External Mesh Network are infrastructure

WMNs and have similar characteristics as the energy constraints, the use of a solar power

system and multiple radios with the same technologies. Therefore, the methodology and

the scenarios used in the development phase have immediate applicability for this work’s

purpose.

Their topologies are depicted in Figure 3.4. The External Mesh Network will be

detailed in this section.

In the External Mesh Network, each mesh router is composed of three modules: the

communication module, the sensing module and the power module.

The communication module consists of a router with two wireless interfaces, a client

access interface consisting of an IEEE 802.11g radio, and an interface for communication

between nodes (backbone), consisting of an IEEE 802.11a radio. The backbone radio

is connected through a RF splitter to two directional antennas pointed towards specific

nodes.

The network protocol used is the Optimized Link State Routing (OSLR), a link state

based protocol designed for ad hoc networks. In the ReMoTe’s network an OSLR variation

is used, the OLSR-ML. This variation uses as cost function the Minimum Loss (ML) metric

[39], which results in routes with minimum error probability in end-to-end communication.

The power module is formed by a solar power system that comprises a 40W solar panel,

a charge controller and a bank of three 12V/7Ah lead-acid sealed batteries connected in

3.3 ReMoTe’s Network 13

(a) ReMoTe project network

(b) External Mesh Network

Figure 3.4: Topologies of the Production network and the External Mesh Network.

parallel, resulting in a voltage of 12 V and total rated capacity of 21 Ah.

The sensing module used for site supervision contains two LM35 temperature sensors,

one LDR 5mm light sensor and voltage and current sensors for the solar panel, batteries

and primary load (the communication module).

The sensing module, allows monitoring the following physical aspects of the network:

• Solar Panel Voltage: the open circuit voltage is 21.6 V. The range is 0 - 21.6V.

• Solar Panel Current: the short circuit current is 2.67 A.

• Battery Voltage: the cycle use voltage regulation is 14.40 - 14.70V.

• Communication’s Module Voltage: the router power rating is 10.5V up to 24V.

• Communication’s Module Current: the nominal power consumption is 6W, given

the power rating operational range the nominal current is 250mA - 570mA.

• External (ambiance) Temperature: the temperature range of the sensor goes from

-55 to 150 degrees.

3.3 ReMoTe’s Network 14

Figure 3.5: ReMoTe’s testbed node - External Mesh Network node.

• Internal (sealed box) Temperature: the temperature range of the sensor goes from

-55 to 150 degrees.

• Incident Light Intensity: The LDR 5mm had its resistance adjusted to output values

in a range from 0 to 5V.

• Bytes in/out for each Network Interface: there is no specific limit.

• Available Flash Memory: the total flash memory is 4MB.

• Available RAM memory: the total RAM memory is 16MB.

• CPU Load Average: there is no specific limit.

• Link Quality: the ML metric scale goes from 0.0 to 1.0.

All data is collected, stored and managed by MeshAdmin [13]. For the purposes of

this work, MeshAdmin was configured to take samples of the monitored parameters in

each network node every 10 minutes. With that configuration set in a network as large as

3.3 ReMoTe’s Network 15

the REMOTE project’s one, the network database scales up to 1GB of sensed data per

year.

Having described the network and it’s available data, a discussion over AI methods

and techniques to perform the fault detection and diagnosis follows.

Chapter 4

Machine Learning and Fault Detection
and Diagnosis

Along with the development of the Internet, multimedia technology and research in

Artificial Intelligence (AI), a series of new questions were aroused. AI has attracted

increasing attention in many disciplines, being used to emulate the human brain. Started

as a computer science branch, these systems have shown intelligence and human behavior

characteristics. AI expert systems are used in practical applications in various fields of

knowledge, as well as many aspects of social life, and also in the development of the

learning as a concept [48].

4.1 Machine Learning

Machine learning is a branch of artificial intelligence that focuses on the study of

systems that develop learning through data analysis. Its classic definition is [35]:

“A computer program is said to learn from experience E with respect to some class

of tasks T and performance measure P, if its performance at tasks in T, as measured by

P, improves with experience E”

In other words, machine learning-based programs are those that change their behavior

with the experience for a better future performance.

Thus, it can be said that machine learning focuses on the prediction of behavior based

on previously known properties. This prior knowledge that assists in this prediction is

acquired by what is commonly named “training”.

There are three well established approaches for training in machine learning: super-

vised learning, unsupervised learning and reinforcement learning [32]:

4.1 Machine Learning 17

• Supervised learning: is one that requires some sort of supervision in the learning

process. The supervisor gives typical examples of each concept that is to be learnt.

An input and expected output is given and it is replicated for new inputs.

• Unsupervised learning: there is no supervisor to give typical examples. In this case,

the learning process is autonomous. Using mostly statistic properties of the data a

set of examples is determined and used to evaluate new inputs.

• Reinforcement learning: learns by the interaction with a dynamic environment in

which a certain goal must be accomplished (such as driving a vehicle). A target

function is used to determine the degree of success of a strategy.

The most common tasks in machine learning can be divided into classification, regres-

sion, clustering and association [32]. For a slightly more comprehensive description of the

concepts involved in learning and these activities, the following subsections will describe

the main points regarding these learning methods from the perspective of algorithms.

4.1.1 Supervised learning

To solve the learning problem many different algorithms were developed in order to

get useful results. Some of these algorithms use data generalization, where an universe

can be represented from a data set with particular characteristics.

Labeling all possible answers of a data input set, a search within this set of previously

known responses can be used as a solution when new unlabeled data is presented. When

we classify all possible answers this way, it is said that the created algorithm is a supervised

algorithm. And the data group used to adjust the machine is called the training set.

In the search for generalization there are three important decisions to make in machine

learning systems [32]:

1. The concept description language.

2. The order in which the search for answers is performed.

3. How to avoid overtraining (overfitting) for a set of training data.

The three properties that emerge from the decisions above are called “bias”, respec-

tively: language bias, search bias and bias in estimator.

4.1 Machine Learning 18

In the case of language bias, data representation should be carefully chosen, as this

directly affects what can be extracted from it. The choice of “best response” is made

from some criteria defined by the researcher. The final result should be the best from the

quantitative point of view and also from goodness of fit point of view. The goodness of

fit is a measure of how well the model fits the data set, observing the error between the

model response and the expected value.

Due to the large number of response possibilities, it is not usual to perform a search

through all response space to ensure that the result is the absolute best. Therefore, the

search result is found most often in an heuristic way, thus there is always the possibility

to enhance the solution.

Regarding the prevention of excessive training, despite not being totally unrelated to

the search bias, it constitutes a special problem. This problem of choosing the training

data set will influence what may or may not be learned. One should start training with

the most basic forms of representation and only after its validation use a more complex

representation form.

Thus, the search is always in favor of simpler descriptions, using as stop criteria a

response considered complex enough. This method is called forward pruning.

There is no best algorithm or learning paradigm. For each problem you must find the

best way to associate descriptions and biases [47].

4.1.1.1 Classification and Regression

The main task of supervised learning, classification, aims to identify to which par-

ticular class a given entry belongs. Consider the following example: a user of a social

network has features like access time, home city of access and other relevant points that

make up his/her profile. These features are associated with a user profile class and can

be used to trigger specific responses to user’s actions. Thus, the user in question could fit

into profiles such as sports enthusiast and that information used to display sports related

news and advertisement.

Regression is similar to classification. However, in classification, records are identified

by categorical values and grouped into classes. In the regression, records are identified by

a numerical value. This makes possible a value estimation of a given variable analyzing

a known record. As an example, a set of records containing the values of monthly energy

consumption of a residence can be considered. After being analyzed, these records can

4.1 Machine Learning 19

provide a forecast of future expenses for the same household.

Examples of algorithms: Decision Trees, k-Nearest Neighbors, Linear Regression,

Naive Bayes, Neural Networks, Support Vector Machine [22].

4.1.2 Unsupervised Learning

In unsupervised learning properties and probability density functions should be in-

ferred from the data set without the aid of previous information about the response space.

In general, the data set is larger and more complex than the used in a supervised

learning [32]. Therefore, it is hard to determine the validity of inferences from most

unsupervised learning algorithms.

Appealing to heuristic arguments is usual, not only to motivate algorithms, as is often

the case in supervised learning, but also to measure the quality of obtained results. This

led to the proliferation of proposed methods, since efficacy can not be verified directly

[23].

4.1.2.1 Clustering

The clustering problem is: given a database, group (cluster) objects in a way that

similar objects are in the same cluster among the clusters created [36].

There are several areas that makes use of it, from grouping categories of people to

more general objects such as software functions.

Examples of algorithms: k-Means, DBSCAN, Expectation-Maximization (EM) [22].

4.1.2.2 The Association Problem

The methods of learning shown so far were part of a predictive analysis, in which you

want to predict the unknown value of a particular variable from the historical analysis

of the data stored in the database (training base). Other tasks as data description, that

extracts patterns and rules that describe important characteristics of the data application

domain, may also be solved through machine learning. The association problems are the

most common example.

To associate is to identify relations in data. These relations refer to objects fre-

quencies in an experiment. One object frequency is related to another one and if this

4.1 Machine Learning 20

occurrence is recurrent through experiments there is an association between these two

objects frequencies.

Although it looks simple to the point of view of data mining techniques, it gives good

results, especially when standard profiles are analyzed.

A classic example is a supermarket customer who has a consumer profile, this profile

was generated analyzing several costumers shop lists. Consumed items and their frequen-

cies are related, facilitating the organization and arrangement of the items displayed to

the costumer and also provide information for personalized marketing.

Examples of algorithms used: Apriori, Eclat, FT-Growth.

4.1.3 Reinforcement Learning

Reinforcement learning is the problem faced by an agent who must learn how to

behave in a dynamic environment through trial and error interactions. There is a strong

resemblance to a research paradigm with the same name in psychology. Reinforcement

learning is considered as a class of problems, rather than as a set of techniques to solve a

generic problem [29].

There are two main strategies for solving reinforcement learning problems. The first is

to look in the space of behaviors in order to find one that performs well in the environment.

This approach was taken by work on genetic algorithms and genetic programming, as well

as some newer research techniques [44]. The second is the use of statistical techniques

and dynamic programming methods to estimate the utility of taking actions in states of

a defined universe.

4.1.4 Other Learning Methods

Some alternative learning methods are emerging and are mostly techniques that try

to bypass the traditional methods’ problems. Examples of these techniques are:

• Extreme Learning Machines (ELM): These are techniques that seek to solve the

problems of slowness in learning, difficulties to interpret the operations of the ma-

chines and low computational scalability. The ELM is based in using artificial neural

networks with random intermediate layers and make the training only in the outer,

extreme, layers. This technique has shown good potential in solving regression and

classification problems [25].

4.1 Machine Learning 21

• Semi-Supervised Learning: It assumes that there are a few labeled data and the

effort to obtain more copies of labeled is too high, for getting labeled data is not

a simple task. So it tries to make use of both supervised learning with the labeled

data and unsupervised learning with the unlabeled data and produces a decision

boundary analyzing the responses of both models [51].

• Transfer Learning: In all methods mentioned training and test data are taken from

the same space and have the same distribution attributes. The Transfer Learning

seeks to solve a given problem adapting the solution of a similar one. Thus, the

technique enables the learning transfer in different attribute spaces and problems

with small distribution differences [38].

4.1.5 Available Tools

Several tools were developed for the machine learning purpose. Many of them are

in the form of libraries and modules for programing languages, as scikit-learn, used in

Python and MatLab toolboxes, and there are also specific programing languages used for

statistical purposes, as R [46]. There are also software suites that offer the whole process

of learning, from organizing and preparing the data to create graphical representations

that help interpret the results. Some these software suites are presented in the subsequent

sections.

4.1.5.1 IBM SPSS Modeler

Originally called Clementine by ISL upon its release in 1994, it was later acquired by

SPSS in 2010, which in turn merged with IBM in 2010. Since then it has been called

the IBM SPSS Modeler. With its latest version launched in 2015, as IBM SPSS Modeler

17.0.

SPSS Modeler is a text analysis and data mining software, widely used to create

predictive models. This tool has a graphical interface that allows users an easy way to

visualize the data, using flow charts [26].

This software supports several algorithms, such as neural networks, decision trees,

Bayesian learning, among many others [22].

4.2 Fault Detection and Diagnosis 22

4.1.5.2 Oracle Data Mining

Oracle Data Mining (ODM) offers the use of machine learning techniques supported

by native features of Oracle Database [37].

The main idea behind ODM is to enable Oracle Database users to transparently

consult the database using data mining techniques. This is intended to facilitate the

database administrator to find new results and analyze the data from a new perspective.

In conjunction with the ODM, other supplements are presented, including Oracle

Data Miner, which assists you in generating ODM flow chart. The graphical interface of

Oracle Data Miner is very similar to the IBM SPSS Modeler. ODM implements several

algorithms in the categories of classification, regression and association.

4.1.5.3 Weka

Weka is a collection of machine learning algorithms for data mining tasks. The algo-

rithms can be applied directly to a dataset or called from Java code. The Weka contains

tools for data pre-processing, classification, regression, clustering, association rules, and

visualization. It is also well suited for developing new machine learning systems [21].

Weka was developed at the University of Waikato in New Zealand, and its name means

Waikato Environment for Knowledge Analysis (WEKA). The system is written in Java

and distributed under the terms of the GNU General Public License. The tool runs on

many platforms and has been tested on Linux, Windows and Macintosh Operating System

(Mac OS). It provides a uniform interface to many different learning algorithms, along

with methods of pre and post processing and evaluating the result of learning systems in

any given data set.

Weka is available from the website www.cs.waikato.ac.nz/ml/weka. It can be down-

loaded as a platform-specific installer or a jar file, a Java executable, which runs in the

usual way if Java is installed. It is a free tool. There are free online courses for those

interested in data mining and machine learning field.

4.2 Fault Detection and Diagnosis

With the database of network’s monitored data and the knowledge of failures that

most affected the mesh routers, we decided to model our FDD problem as a classification

4.2 Fault Detection and Diagnosis 23

problem. Therefore, it should be sufficient to define if the node is under regular operation

or in failure mode, and identify that failure, based on the data generated by the sensing

module.

To set the classes of the problem, we defined a fault dictionary. A set of the common

flaws observed on the network nodes was defined, i.e. the fault dictionary, based on the

previous experience of the project team. Each fault of the dictionary will be detailed

later, they are:

• high processor usage;

• high RAM memory consumption;

• battery failures;

• low efficiency of the solar panel;

• misalignment of the antennas;

• defects on the RF cable connectors.

Having defined the set of classes in this fault dictionary, and the possible sensed data

used for the classification task, we had to evaluate the classification algorithms for the

task.

4.2.1 Classification algorithms

We had to evaluate a series of classification algorithms, and choose a group of these

to perform the tests. For the construction of the classifiers and performance tests, the

Weka tool [21] was used.

The sensing module generated data containing several numerical attributes, and we

have added one nominal attribute to the problem, the class. Different classification models

can be used to solve problems with such characteristic. These models are: statistical,

linear, rule-based, instance-based and divide-and-conquer [47].

Before discussing the models, we will introduce some assumptions and notations. Let

X = (X1, ..., Xn) be a vector of observed random variables, called features, where each

feature,Xi, takes values from its domain Di. The set of all feature vectors is denoted

ω = D1 × ... × Dn, in our problem it represents all possible samples of sensed data.

4.2 Fault Detection and Diagnosis 24

Let C be an unobserved random variable denoting the class of a given sample, where

C = c|c ∈ {0, ..,m− 1}. Capital letters such as Xi, will denote variables, while lower-case

letters, such as xi, will denote their values; boldface letters will denote vectors. A classifier

is defined by an hypothesis function h : ω → C, that assigns a class to any given example.

4.2.1.1 Statistical Classifiers

Statistical models are used to study the probability that an instance belongs to a

certain class based on the value of its attributes and distribution of each attribute per

class. The most common statistical models are based on Bayes Theorem of conditional

probability. In this work, the Naive Bayes [43] algorithm was chosen to represent this

group of algorithms.

The Naive Bayes algorithm is a simplification of Bayesian Classifiers. The Bayes

Optimal Classifier h∗(x) use as hypothesis a discriminant function fi(x), i ∈ C, the class

posteriori probabilities given a feature vector, i.e. fi(x) = P (C = i|X = x) and selects the

class with maximum discriminant function on a given example: h∗ = argmaxi∈C{fi(x)}.

Applying the Bayes’ Theorem:

fi(x) =
P (X = x|C = i)P (C = i)

P (X = x)

The value of P(X=x) is identical for all classes, and therefore can be ignored. This

yields Bayes discriminant functions to:

h∗(x) = argmaxi∈C{P (X = x|C = i)P (C = i)}

Direct estimation of P (X = x|C = i)P (C = i) can be hard in high-dimensional

feature spaces. Therefore, approximations are commonly used. In Naive Bayes, it is

assumed that all features are independent given class, that is, P (X|C) =
n∏

i=1

P (Xi|C).

Consequently, we have the Naive Bayes classifier defined as:

h(x) = argmaxi∈C{
n∏

j=1

P (Xj = xj|C = i)P (C = i)}

4.2 Fault Detection and Diagnosis 25

4.2.1.2 Linear Models

Linear models are divided into two subgroups: those using linear regression and linear

transformation to create a class membership function, and those that work with the

hypothesis of linear separability of classes, and thus try to find hyperplanes that divide

the classes in a vector space. For this work, the Support Vector Machine [9] was used.

SVM is based on the search for the optimal hyperplane to discriminate linear separable

problems. Intuitively, a good separation is achieved by the hyperplane that has the largest

distance to the nearest training-data point of any class, so-called functional margin (ρ),

since in general the larger the margin the lower the generalization error of the classifier,

as can be seen in Figure 4.1.

Let g(x) be the discriminant function and C = {−1, 1} for the closest points of

each class to the discriminant function, called support vectors. We’ll have w0 and b0 as

parameters to be optimized in terms of ρ to find the discriminant function with maximum

functional margin.

g(x) = wT
0 .x + b0 (discriminant function)

g(xi) = wT
0 .xi + b0 = −1 (lower margin hyperplane)

g(xi) = wT
0 .xi + b0 = +1 (upper margin hyperplane)

Figure 4.1: SVM example.

We know from analytic geometry that the distance between a given point and a line

is:

r =

∣∣∣∣g(xi)

wT
0

∣∣∣∣

4.2 Fault Detection and Diagnosis 26

Therefore, the distance between the support vectors and the discriminant function is:

r =
1

|wT
0 |

=⇒ ρ =
2

|wT
0 |

As we also have to prevent examples from falling into the margin, we add another

limitation:

|g(x)| ≥ 1,∀xi

The optimization problem presented can be by convenience reduced to: argmin(w,b)
1
2
‖w‖2,

subject to yi(w.xi − b) ≥ 1,∀i = 1, 2, ..., N . Which corresponds to the Karush-Kuhn-

Tucker (KKT) conditions [19] and can be solved through quadratic programming. For

linearly separable problems we have our hypothesis:

h(x) =
N∑
i=1

λiyix
T
i x + b

From the KKT Conditions:

λi[di(w
T .xi + b)− 1] = 0,∀i = 1, 2, ..., N

λi ≥ 0,∀i = 1, 2, ..., N

For non-linear separable problems the Cover’s Theorem [12]:

“A complex pattern-classification problem, cast in a high-dimensional space nonlin-

early, is more likely to be linearly separable than in a low-dimensional space, provided

that the space is not densely populated.”

Therefore, for non-linear separable problems, a non-linear transformation of the fea-

ture space is performed and the problem is solved as a linear one. The hypothesis for the

non-linear separable case is:

h(x) =
N∑
i=1

λiyiK(x,xi) + b

N∑
i=1

λiyi = 0,∀i = 1, 2, ..., N

0 ≤ λi ≤ C, ∀i = 1, 2, ..., N

Where C is a parameter to be set and K(x,xi) is a kernel function of the transfor-

mation. The most common kernels are:

4.2 Fault Detection and Diagnosis 27

• Gaussian: K(x,xi) = e−
1
2σ
‖x−xi‖2

• Polinomial K(x,xi) = (xTxi + 1)p

• Sigmoidal K(x,xi) = tanh(β0x
Txi + β1)

4.2.1.3 Ruled-Based Models

Rule-based models focus on trying to find rules which best separate the given class

from the others. These models start from the observation of a specific class to create a

rule that separates it from the others as accurately as possible. At the end, a set of rules

is created and evaluated in succession to determine the class of a given instance. The

rule-based algorithm tested in this work was the Decision Table Majority [30].

The Decision Table Majority (DTM) has two basic components:

• A schema, which is a set of features, {S ⊂ ω}.

• A body, a multiset of labelled instances. The instances consists of an example, with

defined values of features in the schema and a label, the class, {I ∈ X|C = c}.

When a new instance Xi is presented, the respective value of c is assigned by searching

in the body for a set I of exact matches for the features S, being all other features ignored.

If there’s no match, it returns the majority class in the DTM; otherwise it returns the

majority class in I.

The problem is finding the optimal subset S for the classification task. An usual

approach is to take each class in turn and seek a way of describing it with if -then tests

and cover all of its instances. This is called a covering approach because at each stage

you identify a rule that “covers” some of the instances. It ranks the tests performed in

the rule based on the information gain of the test:

p

[
log
(p
T

)
− log

(
P

T

)]

Where p and t are the number of positive instances and the total number of instances

covered by the new rule, and P and T are the corresponding number of instances that

satisfied the rule before the new test was added.

To illustrate, consider Figure 4.2 with an ω space of instances, with two features x

and y and classes red and blue. To cover the red class we add the following rule to the

4.2 Fault Detection and Diagnosis 28

table: if(x ≤ 1.2) =⇒ c = red. But it doesn’t cover extensively all red instances.

Therefore another test is performed in the rule, if(x ≤ 1.2 ∨ y ≤ 1.0) =⇒ c = red,

which gives us information gain. After exhausting tests, if there are still instances of a

class to be covered, a new rule might be added to the table. And the process continues

until all instances in the space are covered by a rule.

Figure 4.2: DTM example.

4.2.1.4 Instance-Based Models

Instance-based models use distance functions to determine a group of instances at

the training database closest to the evaluated instance. The majority class of this group

is chosen to label the targeted instance. Under this class of algorithms, we used the

k-Nearest Neighbors (k-NN) [2].

The k-NN algorithm uses a distance function to define the k nearest instances in the

space ω to a given instance of test. The outcome is the majority class of this k group of

instances. As can be seen in the Figure 4.3 a proper set of the parameter k is of great

relevance.

To define this k-group different distance functions might be used, usually they are:

• Euclidean distance: D(X1,X2) = ((x11 − x21)2 + (x12 − x22)2 + ...+ (x1n − x2n)2)
1
2

• Manhattan distance: D(X1,X2) = |x11 − x21|+ |x12 − x22|+ ...+ |x1n − x2n|

• Minkowski distance:D(X1,X2) = (|x11 − x21|q + |x12 − x22|q + ...+ |x1n − x2n|q)
1
q

4.2.1.5 Divide-and-Conquer Models

Finally, the divide-and-conquer models, usually represented as decision trees, recur-

sively analyze each attribute and possible cutoff points that result in a subgroup of in-

4.2 Fault Detection and Diagnosis 29

Figure 4.3: k-NN example.

stances that better separate classes, with higher level of purity of the majority class in

each subgroup. The algorithm C 4.5 [41] was selected.

The C4.5 is a decision tree created based on the concept of information entropy. It is

based in ID3, a previous decision tree generator also developed by Quinlan. ID3 looks in

each feature for splitting points that separate the space of features ω in subgroups with

greater class purity, i.e. information gain ratio in splitting, calculated as:

G = E(S)− [E(S1) + E(S2)]

E(S) = −
m−1∑
i=0

pilog2(pi)

G is the information gain, E(S) the entropy of a set of instances in a subspace S ∈ ω
based on classes distribution, S1 and S2 the subsets after splitting S and pi is the ratio

of instances in S of the i-th class. The algorithm calculates recursively the information

gain for splitting points in each attribute and then generates the decision tree. The C4.5

algorithm takes one step further, it prunes the tree for better generalization.

4.2.2 Algorithm’s Performance Evaluation

In order to evaluate the classification algorithms there are three usual steps:

• Train. The train step uses a training database to fit the hypothesis function’s

constants.

• Test. The test step uses a pre-labeled test database to adjust the algorithm’s

parameters obtained in the training. The adjustments are used to perform a new

4.2 Fault Detection and Diagnosis 30

training, and this train-test cycle is executed until the algorithm attains its best

performance with the given dataset.

• Validation. After training the algorithm to fit the hypothesis’ constants, finding

the best parameters with train-test cycles, the classifier is supposedly with the higher

performance, but this might be an overfitted solution. A third step, the validation,

is needed to verify the classifier’s generalization. A validation database is used with

completely new data for that purpose.

To illustrate the performance measurements made in the test and validation steps let’s

use an example of a two classes problem. Take the white dots and black dots represented

in Figure 4.4 and suppose the classifier divided the classes with the circle, classifying all

dots inside the circle as white dots and outside the circle as black dots.

Figure 4.4: Algorithm Performance Measurement Example.

In this example, we use the white dots as our classification target: the white dots

correctly classified as white dots are the true positives, represented by the dark green

area; the white dots wrongly classified as black dots are the false negatives, the light

green area; the black dots wrongly classified as white dots are the false positives, the dark

red area; and the black dots correctly classified as black dots are the true negatives, the

light red area.

The performance measures taken from such classification are:

• Accuracy (ACC) - The ratio of correct classifications for each class. It represents an

overview of the classifier. In the example we have the dots in the dark green area

4.2 Fault Detection and Diagnosis 31

and light red area as correct classifications over the whole amount of dots.

ACC =
11

24
= 0.46

• Precision (P) - The ratio of correct classifications of a given prediction. It represents

how accurately the classifier separated a class from another, giving an intuition

about how satisfactory is the decision threshold achieved for the observed class. For

the white dots it would be the dots in the dark green area over the dots in the circle,

dark green and dark red areas;

Pwhite =
4

11
= 0.36

• Recall or Sensivity (R) - The ratio of correct classifications of a given class. It

represents the classifier’s difficulty of adjusting a decision threshold for an observed

class. For the white dot class it would be the dark green area dots over all dots in

the light and dark green area;

Rwhite =
4

10
= 0.4

• F-1 measure (F) - Precision and Recall have related results and even similar in-

terpretations in some cases. They both concern in comparing how a given class

actually is and how the classifier perceive it, the first observing the data complexity

compared to the classifier’s decision threshold and the other the classifier’s ability to

create complex decision threshold compared to the data. Therefore a single metric

for this matter was created taking on account either points of view, given by the

harmonic mean of Precision and Recall;

Fwhite =
2

1
P

+ 1
R

= 0.38

As more complex problems take place, it is not possible to represent the classifier

prediction in an image as in our example. There might be too many classes or several

dimensions to represent. A proper form to represent the relationship between predictions

and real classes is using the confusion matrix.

In the confusion matrix you represent the predicted classes in the columns and actual

classes in rows. In our example we would have the Table 4.1. In the white dots column

and white dots row we have the dark green area represented; in the white dots column

and black dots row, the light green area; in the black dots column and white dots row the

dark red area; and in the black dots column and black dots row the light red area.

4.2 Fault Detection and Diagnosis 32

white dots black dots
white dots 4 7
black dots 6 7

Table 4.1: Confusion Matrix Example

Given these classification algorithms and the performance measurements, the knowl-

edge discovery in databases steps could be started. All the classification algorithms are

to be tested, the accuracy and F-1 measure used to evaluate and the confusion matrix

will be the representation used to show the results of the best algorithm for the task.

Chapter 5

Methodology

As previously stated, the ReMoTe project team defined the scope of work for MAD,

setting a fault dictionary. After this step, this work’s proposal was to solve the FDD

problem as a classification one, using the machine learning approach. In Chapter 4 some

machine learning techniques and performance evaluation methods were discussed.

The machine learning approach usually follows some traditional steps — the so-called

five steps for extracting knowledge from a database [17]. As shown in Figure 5.1 these

steps are: attribute selection, preprocessing (data cleaning and enrichment), data trans-

formation (if needed), data mining and result evaluation.

Figure 5.1: An Overview of the Steps That Compose the KDD Process [17].

These steps were created to maximize the algorithm’s performance. Raw data us-

age for training and testing a classifier can lead to a poor result, therefore an attribute

selection, preprocessing and transformation might be needed.

5.1 Populating the Database 34

In those steps a specialist knowledge is extremely useful, since the specialist can

relate attributes’ behavior to specific classes and vice versa. The ReMoTe engineers team

knowledge was extensively used in those steps and several tests were performed.

5.1 Populating the Database

After the fault dictionary was defined, it was necessary to obtain samples of each of

these events occurrences to generate a proper training database. At this stage, controlled

tests were performed in the External Mesh Network to inject faults at the network.

Six tests were performed, inflicting faults and monitoring their effects in the col-

lected data. Each test had an observable influence over the parameters. In the following

paragraphs, we define these tests and explain how they have influenced the monitored

parameters when compared to a node at regular operational state. The tests were:

• High processor usage - The objective was to create high demand for CPU us-

age in the node. To emulate the effect of a large and constant flow of processing

requests, a random byte stream was compressed while the average CPU Load was

monitored by MeshAdmin (among all other collected node information). As an ef-

fect we can observe in Figure 5.2 the constant high requirement of the processor

by these processes as soon as the test started (June 30), increasing the CPU Load

Average values from below 0.5 to above 2.0 and sustaining it this high.

Figure 5.2: CPU Load Average during High Processor Usage test.

• High RAM memory consumption - The network nodes used in this work have

a reduced amount of available flash memory, used mostly for the operating system

installation. When the node is on, most file activities occur in RAM, including

5.1 Populating the Database 35

writing into temporary files. Therefore, any faulty process that consumes large

amounts of memory may affect core functionalities. On extreme cases, the lack

of available RAM may cause node unresponsiveness, which triggers a watchdog to

reboot it. Hence, in this experiment we employed a process that would create large

temporary files in order to verify how this behavior would be manifested in the data

collected by MeshAdmin.

In Figure 5.3 the test result was the available memory decrease. The memory

consumption stayed below 1 MB most of the time, with peaks occurring when

the node restarted. Usually, at least 1.6 MB of RAM is available under normal

conditions, as can be seen in 5.3, from the end of day 22 on, when the test had been

ceased.

Figure 5.3: Available Memory during High RAM Memory Consumption test.

• Battery Failure - The battery pack is comprised of three batteries in parallel.

Initial tests consisted of replacing one or more of the good batteries in the pack for

defective batteries. Subsequently, additional tests were performed with an incom-

plete battery bank, with batteries removed gradually. In these tests, a reduction of

the node autonomy could be observed, resulting in a shutdown during certain peri-

ods of the day. As expected, the node autonomy varied according to the number of

defective or missing batteries, but also according to the intensity of sunlight during

the period, which affects battery charging during the day.

In Figure 5.4 there is a plot of two nodes, one with a perfect battery pack (id2) and

another with defective batteries (id1). As the sun sets the communication module

consumes the batteries’ energy and the defective pack discharges almost immediately

5.1 Populating the Database 36

with a complete shutdown before 6 PM.

Figure 5.4: Battery Voltage in the Battery Failure test.

• Low Solar Panel’s Efficiency - Several different tests on the solar panel were

performed, all aiming to reduce its efficiency. This was accomplished by casting full

and partial shadows over the panel and also by varying the shadow incidence angle.

Most tests, indeed, resulted in a lower efficiency of the solar panel, also reducing

the node’s autonomy.

The current provided by the solar panel was heavily affected in this process as seen

in Figure 5.5. In July 31st, a regular operational day, the current provided by the

solar panel had peaks above 2000 mA. As soon as the test started in August 1st,

a bulkhead was placed in front of the solar panel and the current provided wasn’t

much higher than 500 mA, despite the regular solar incidence throughout the day.

Figure 5.5: Solar Panel Current in the Low Solar Panel’s Efficiency test.

• Antennas Misalignment - The directional antennas were misaligned to cause

a drop on the received signal strength. To register this link quality drop, the ML

metric was monitored. During the misalignment tests, the quality level of the tested

5.1 Populating the Database 37

link varied, as expected. It was also noted that climate variations during the test

had an impact over the metric.

This test affected the ML metric. In Figure 5.6 it is possible to see that before Sep

17th, when the test started, the link quality level was above 0.8 during most of the

day. After the antennas were misaligned there’s a drop in the quality metric, which

stayed under 0.8, during most of the time. Also the ML metric standard deviation

was clearly affected, with a more unstable link.

Figure 5.6: ML-Metric in the Antenna Misalignment test.

• RF Cable Connectors Defect - The antennas are connected to the router via

an N-type male connector. The connector was brought to a poor contact condition,

which caused instability in the link quality. In Figure 5.7 it is possible to see that

the ML metric average was slightly impacted by the test, but the major effect was an

increased standard deviation of the metric when compared to the same link before

the tests began in Figure 5.6.

Figure 5.7: ML-Metric in the RF Cable Connectors Defect test.

Those were the performed tests. All network’s nodes were being monitored by the

MeshAdmin during the whole process and, from that point on, the training and testing

databases could be filled.

5.1 Populating the Database 38

5.1.1 Databases

After 5 months of tests, 25393 entries were added to the database. The class distri-

bution of the database is shown in Table 5.1 where F is the frequency of the class and Fr

the Relative Frequency. Figure 5.8 shows a pie chart with the database composition.

CLASS F Fr
Regular

Operational State
9432 0,37

High Processor
Usage

1010 0,04

High Memory
Consumption

1000 0,04

Battery
Failure

4032 0,16

Low Solar
Panel’s Efficiency

3835 0,15

Antennas
Misalignment

4215 0,17

RF Cable
Connector defected

1869 0,07

TOTAL 25393 1

Table 5.1: Database Class Distribution.

It is important to note that the majority class is the regular operational state class,

with 37% of instances. Hence, a simple classification method, which always responds with

the majority class (in this case, regular operational state class) would have an accuracy

of 37%. Thus, this value will be used as a baseline for other classifiers.

As already stated, tests are used for evaluation purposes, therefore a training database

and a test database are both needed. Thus, we had to split the database in two. For that

purpose we used the cross-validation method to analyze the training results. This method

separates the training database in k groups, of which k-1 groups are used in the algorithm

training and the remaining group as a test group to measure the classifier performance.

These groups are interchanged between training and testing until each of the k groups is

used once for testing.

Using cross-validation may result in a biased result [31]. Thus, the use of stratified

sampling to form a test database will diminish this problem and also help to make a

proper reproduction of the original database and its characteristics.

As more data are used to train, the results will be closer to the original classifier

(the one using the whole available data). Therefore there is a trade-off between the

5.2 Selecting Data 39

Figure 5.8: Database class distribution.

amount of data used for the test without decreasing the classifier’s performance and how

representative is your test group. There’s no easy answer for that question, but there

is a consensus that the more data one has the smaller the test partition can be without

loosing generalization. Using 10% of the database for test usually gives good results

[34][4], therefore 10-Fold cross-validation will be used to split the database into training

and test.

For the Validation database, the network was monitored without any intervention

for one month after all tests occurred. In this month it was possible to see the regular

operation of the network and one fault incident. One of the mesh nodes had a battery

fault during the second half of the month. This node’s data will be used to validate the

classifier with the best performance measures during test step.

5.2 Selecting Data

The task of learning is preceded by the definition of concepts, as, for example, the

concept of node state. The node states defined in this work are: in regular operational

state; or in any of those failure states set in the fault dictionary. This concept definition

5.3 Preprocessing and Data Transformation 40

task can be divided into two subtasks: decide which features will be used to describe it and

deciding how to combine these features. Therefore, the selection of relevant attributes is a

central problem. It simplifies a model, reduces training time and enhances generalization

[21].

In Section 5.1, before the training and test databases definition, the impact of each of

the nodes’ states in the the monitored parameters were evaluated. A comparison of the

node behavior and it’s measured parameters before and during tests was performed. This

way, it was possible to infer the most relevant parameters using the MeshAdmin graphical

analysis tools. This process resulted in an initial selection of a group of relevant parame-

ters: average CPU load, available flash memory, solar panel current, battery voltage and

link quality.

In order to evaluate if other parameters not considered could affect the diagnosis

the following methodology was employed: The parameters were progressively removed

from the group, forming a new candidate group, if the parameter removal didn’t have

an impact over the accuracy, the parameter was definitely discarded. By repeating this

process until all available parameters were either discarded or preserved, a final group of

relevant parameters could be obtained.

5.3 Preprocessing and Data Transformation

After selecting the parameters, the steps of preprocessing and data transformation

were performed. Long periods of node inactivity, resulting in unusable information, spu-

rious data and other known issues, such as infrastructure network problems affecting the

server, were removed from the training database.

After the primary data cleaning was performed, some basic recommended steps were

taken, as scaling data [24]. The main advantage of scaling is to avoid attributes in greater

numeric ranges dominating those in smaller numeric ranges. Another advantage is to

avoid numerical difficulties during the calculation. The data was then normalized.

The data enrichment and transformation process was based on the description of a

time continuous phenomena, like battery charge and discharge. Notice that the gath-

ered data is composed of instantaneous samples of the monitored parameters, while and

nodes’ failures progress over time. Hence, it was necessary to define a long enough ob-

servation interval comprising several samples so that the tuples in the training database

were representative of the failures.

5.3 Preprocessing and Data Transformation 41

To this end, the mean and standard deviation of the parameters were evaluated in

the following intervals: 1 hour, 2 hours, 4 hours, 8 hours, 12 hours and 24 hours. To

evaluate which interval was more adequate, we used the same methodology employed in

the selection step.

The final transformation step was taken to enable the use the Weka software in the

algorithm evaluation step. The entry file for Weka has a standard format: the Attribute-

Relation File Format (ARFF), which is comprised of an ASCII text file that describes a

list of instances sharing a set of attributes.

ARFF files have two distinct sections. The first section is the Header information,

which is followed by the Data information. The Header of the ARFF file contains the

name of the relation, a list of the attributes (the columns in the data), and their types.

The Data section of the file contains the data declaration line and the actual instance

lines.

An example of an ARFF file dataset used for training looks like this:

% 1. Title: Autonomic Diagnose Module Database

%

% 2. Source:

% (a) Author: Vinicius Ferreira

% (b) Owner: MidiaCom Laboratory (contato@midiacom.uff.br)

% (c) Date: December, 2015

%

@RELATION mesh_nodes_measurements

@ATTRIBUTE date DATE ‘‘HH:mm’’

@ATTRIBUTE rebooted {yes, no}

@ATTRIBUTE cpu_load_average NUMERIC

@ATTRIBUTE battery_voltage NUMERIC

@ATTRIBUTE class {Regular_State, High_CPU_Usage, Battery_Failure}

@DATA

03:50, no, 0.14, 11.87, Regular_State

08:30, no, 0.23, 14.35, Regular_State

10:50, yes, 2.11, 12.24, High_CPU_Usage

18:50, yes, 0.14, 11.63, Battery_Failure

5.3 Preprocessing and Data Transformation 42

06:30, yes, 0.12, 11.57, Battery_Failure

Chapter 6

Results

The decisions made in Chapter 5, such as: the baseline set in about 40% of accuracy;

the search for a definitive group of selected attributes; the attribute transformation from

an instantaneous observation to a defined time observation; were all evaluated with the

algorithms’ performance.

The results presented in this chapter are divided in three parts (sections):

• Problem Description: Comprises the attribute selection and transformation. The

result of this part is the determination of the best way to use the data and represent

the real problem.

• Algorithm Evaluation: With data representation set, each classifier could be

created using the selected algorithms and then tested using the described evaluation

method.

• Results Interpretation: The best algorithm will be further detailed, its confusion

matrix shown, its results validated and the expectations for future work detailed.

6.1 Problem Description

The first investigation was about the observation interval, and the Decision Table was

used for that purpose. This choice was based in the algorithm simplicity — it doesn’t have

any parameter adjustments —, and also because it has an attribute selection embedded.

Therefore, the lack of a previous attribute selection doesn’t affect its results as it would

affect other algorithms. Later, when the attribute selection step takes place, each attribute

will already be in its best representation.

6.1 Problem Description 44

The observation intervals were: 1h, 2h, 4h, 8h, 12h and 24h. The Decision Table

accuracy results were depicted in Figure 6.1. As the observation interval increased, the

algorithms accuracy also increased, but they didn’t result in a significant change of the

accuracy. The tests stopped with 24 hour observation period as the highest accuracy

result.

Figure 6.1: Decision Table accuracy per observation interval.

This result is consistent with the nature of the problem, since it accounts for a full day

(e.g., a full cycle of battery recharge due to sunlight is comprised, as well as a full cycle

of discharge at night). Some of the faults only manifest themselves in certain periods of

the day. For example, a battery failure is probably not detectable during day, while the

solar panel is capable of supplying energy to the system. However, during the night, the

failure becomes apparent with a faster discharge of the batteries. Hence, the use of a

24-hour period ensures that the relevant period of the day is represented in the database

instances.

In summary, each instance of the training database is comprised of the average and

standard deviation of the samples during the past 24-hour window. Each instance also

contains the timestamp of the last sample from the observed period.

The next step is the attribute selection. Several candidate groups were tested and

the C4.5 algorithm was used to evaluate this test. The C4.5 is a tree algorithm that, as

described, evaluates the potential class entropy reduction for each attribute. Therefore, it

can be seen as an attribute selection algorithm embedded method, since it already assesses

all attributes and only uses the relevant ones. The C4.5 was used with the confidence

factor (CF) set to its default value, 0.5.

6.2 Algorithm Evaluation 45

Monitored parameter 24-hours standard deviation 24-hours average
Solar Panel Voltage No No
Solar Panel Current No Yes

Battery Voltage Yes Yes
Communication Module Voltage No No
Communication Module Current No No

External Temperature No No
Internal Temperature No Yes

Incident Light Intensity No Yes
Available Memory No Yes

CPU Load No Yes
Link Quality Yes Yes

Network Interfaces Traffic No No

Table 6.1: Selected attributes for algorithm evaluation.

Initially, the group of all attributes were: date, uptime, the average and standard

deviation over the last 24h of: battery voltage, solar panel voltage, solar panel current,

router voltage, router current, internal (sealed-box) temperature, external (ambiance)

temperature, incident light intensity, cpu load, disk space, available memory, each network

interface input and output, and link quality.

All these attributes are listed in Table 6.1. The selected attributes (the 24-hour

standard deviation and 24-hour average of each monitored parameter) are marked as Yes,

while the discarded attributes are marked as No.

The final relevant group to represent each failure and node state were: date, uptime,

average and standard deviation of battery voltage, average of solar panel current, average

internal temperature, average of incident light intensity, average of cpu load, average of

available memory, average and standard deviation of link quality.

With the description problem set, the attributes selected and properly represented,

the search for the most suited classifier for the task can be made.

6.2 Algorithm Evaluation

The selected algorithms were applied to the training database and evaluated. The

k-NN, C4.5 and SVM algorithms have parameters to be set while the Decision Table and

Naive Bayes do not have any parameters. For k-NN, the k parameter corresponds to the

size of the group which will be used to define the class of the target instance. For the C4.5

algorithm, the parameters are the minimum number of instances per leaf of the created

6.2 Algorithm Evaluation 46

Class F-1 Measure (%)
Regular Operational State 52,25

High Processor
Usage

52,41

High Memory
Consumption

50,87

Battery
Failure

44,09

Low Solar
Panel’s Efficiency

43,83

Antennas
Misalignment

51,03

RF Cable
Connector defected

51,67

Table 6.2: Naive Bayes F-1 Measure.

decision tree and the confidence factor (CF), a parameter used to prune the tree. For the

SVM the C parameter, indicating the complexity and limits for the λi solution, and also

a definition of the kernel function were used.

The first algorithms to be evaluated were the non-parametric ones, Naive Bayes and

Decision Table. After these algorithms the three parameter based algorithms were tested.

This way it was possible to find the best settings for them and compare it with the other

classifiers. The first evaluation metric used was the accuracy to define the best classifier.

The F-1 Measure was used in the result interpretation step.

6.2.1 Naive Bayes

To use the Naive Bayes algorithm one more step had to be taken: data discretization.

This step was performed using the discretization algorithm embedded in Weka [27], which

uses an information entropy minimization heuristic as a tree algorithm. The Naive Bayes

obtained an accuracy of 49.50%. This result was only slightly better than the baseline

(37%) and it will be used for comparison purposes.

In Table 6.2 the F-1 Measure of each class is presented and it is possible to observe a

higher complexity in detecting the Battery Failure and Low Solar Panel’s Efficiency while

the other classes have a slightly better result.

6.2 Algorithm Evaluation 47

Class F-1 Measure (%)
Regular Operational State 80,49

High Processor
Usage

78,99

High Memory
Consumption

71,29

Battery
Failure

75,36

Low Solar
Panel’s Efficiency

74,92

Antennas
Misalignment

80,94

RF Cable
Connector defected

81,64

Table 6.3: Decision Table F-1 Measure.

6.2.2 Decision Table

As already depicted in Section 6.1, the Decision Table obtained an accuracy of 78.88%.

The result was well above the accuracy of the baseline and differently from the Naive Bayes

result, this one was considered a good option for the desired task.

The F-1 Measure is presented in the Table 6.3. In this classifier the Battery Failure

and Low Solar Panel’s Efficiency are also slightly lower than the others but the lower

point in F-1 Measure is the High Memory Consumption.

This was an unexpected result since the detection of a Battery Fault is considered the

most complex problem due all variables involved, as the battery natural charge/discharge

cycle, the climate influence in the charging cycle and node’s energy consumption in the

discharge cycle. While the High Memory Consumption is one of the simplest, possibly

diagnosed with just one attribute, the available memory average.

6.2.3 k-NN

Another algorithm tested was the the k-NN. In Figure 6.2 the best accuracy result

for this algorithm was found when using k=1.

Despite being superior to the baseline, the 1-NN result was considered much lower

than expected when compared to the other algorithms. The 1-NN results were similar to

the Naive Bayes, hence, there was no further investigations using this classifier and its

accuracy will be used just for comparison purposes.

6.2 Algorithm Evaluation 48

Figure 6.2: k-NN accuracy per k parameter.

6.2.4 SVM

For the SVM there are two settings to be made: the kernel function and the C

parameter. Initially the C parameter was set to 1 and the kernel functions were evaluated.

The kernel variation results, in Figure 6.3, were in favor of a linear kernel function.

Therefore this was the kernel used to find the C parameter with best performance.

Figure 6.3: SVM accuracy per kernel function with C = 1.

With the kernel function set with a linear function, the search for the parameter C

took place. After C=100 the results didn’t improve significantly while the processing time

suffered a large increase. The search was stopped in C=100, which represents the result,

and the accuracy increased with the C parameter as in Figure 6.4. The best accuracy

of 90.59%, achieved with linear kernel function and C=100, will be used in the overall

classifiers comparison. Observing the F-1 Measure in Table 6.4 it is possible to verify the

high complexity in diagnosing the Battery Fault. Therefore this might be a weakness of

this classifier.

6.2 Algorithm Evaluation 49

Figure 6.4: SVM accuracy per C parameter with linear kernel function.

Class F-1 Measure (%)
Regular Operational State 94,9

High Processor
Usage

99,9

High Memory
Consumption

93,6

Battery
Failure

87,6

Low Solar
Panel’s Efficiency

93,1

Antennas
Misalignment

90,9

RF Cable
Connector defected

90,7

Table 6.4: SVM F-1 Measure.

6.2.5 C4.5

The C4.5 algorithm minimum instances per leaf was set in 2, a small value, and the

confidence factor was varied. The tests have shown that the confidence factor variation

did not have a significant impact over the accuracy, as in Figure 6.5.

As observed, the C4.5 algorithm presented a good result. The accuracy of 88.45%

will be used as the C4.5 score, with a set of CF=0.5 and 2 instances per leaf. The F-1

Measure result in Table 6.5 shows the same weak points as the majority of the classifiers,

the Battery Failure and Low Solar Panel’s Efficiency.

6.3 Results Validation and Interpretation 50

Figure 6.5: C4.5 accuracy per confidence factor (CF).

Class F-1 Measure (%)
Regular Operational State 88,19

High Processor
Usage

88,28

High Memory
Consumption

85,98

Battery
Failure

81,47

Low Solar
Panel’s Efficiency

81,91

Antennas
Misalignment

87,92

RF Cable
Connector defected

87,57

Table 6.5: C4.5 F-1 Measure.

6.3 Results Validation and Interpretation

The final step is to compare all the classifiers and choose the best ones to validate.

The best classifiers generated with each algorithm are now compared in Figure 6.6. The

highest accuracies were achieved by SVM and C4.5 algorithms with marks of 90.59% and

88.45% respectively.

The C4.5 classifier was the first to be validated with the data for node id0, collected

during January. This validation database had two distinct phases, the first fortnight, in

which the node appeared to be in perfect state, and the second fortnight, the moment the

battery fault occurred.

6.3 Results Validation and Interpretation 51

Figure 6.6: Overall classifier comparison.

The results were not as expected, as shown in Figure 6.7. The real accuracy was

under 65%, which indicates an overfitting to the training data.

The SVM algorithm responded as expected in the first fortnight, classifying 85% of

the entries as regular operational state. For the second fortnight there was a problem,

40% of the classifications were indeed for battery fault and 37% were for low solar panel’s

efficiency. As previously presumed during SVM’s F-1 measure analysis, the distinction

between battery fault and low solar panel’s efficiency was proved a weak point.

As already expected by the F-1 Measure observation, the Battery Fault is a state

where the classifier tend to perform poorly. Another indicator of this result was the

confusion matrix for the SVM classifier presented in Table 6.6. In this table, the columns

are the real classes, while the rows are the classifier predictions.

Through the confusion matrix, it is possible to note a correlation between battery

failure and low efficiency of the solar panel. This correlation between these diagnoses

represents a possibility of error, as already seen in the validation. However, the solution

presented high reliability indicators, such as high accuracy and F-1 Measure.

The ReMoTe team considered this a good result, considering the high complexity in

diagnosing a Battery Fault. A battery fault diagnose usually takes advantage of a battery

current sensor as a fundamental asset to verify the battery capacity, instrument not used

in this work. Another noticed point was Battery Failure’s different causes, such as lower

capacity, higher inner resistance, among others [16]. In the database population tests only

the high inner resistance was considered, while the problem occurred in this validation

was a lower capacity one, which might have led to this misinterpretation.

6.3 Results Validation and Interpretation 52

(a) First fortnight classifications

(b) Second fortnight classifications

Figure 6.7: C4.5 Validation Performance.

Analyzing the likelihood of the output of each class by the classifier, it was possible

to see that in the Low Solar Panel’s Efficiency classification cases the likelihood of this

diagnose was around 60% of certainty while, for these same cases, the probability for

Battery Fault was 30%. The ReMoTe Team then decided to use as output the two most

probable causes of the diagnose and their likelihood as a final result, to workaround this

problem.

6.3 Results Validation and Interpretation 53

(a) First fortnight classifications

(b) Second fortnight classifications

Figure 6.8: SVM Validation Performance.

This way the autonomic diagnosis solution for SWMNs is feasible and satisfactory.

The generated SVM classifier module will be integrated to MeshAdmin and tested for

possible adjustments and deployment in the ReMoTe production network.

6.3 Results Validation and Interpretation 54

re
gu

la
r

op
er

at
io

n
al

st
at

e

h
ig

h
p
ro

ce
ss

or
u
sa

ge

h
ig

h
R

A
M

m
em

or
y

co
n
su

m
p
ti

on

b
at

te
ry

fa
il
u
re

lo
w

effi
ci

en
cy

of
th

e
so

la
r

p
an

el

an
te

n
n
as

m
is

al
ig

n
m

en
t

d
ef

ec
ts

on
th

e
R

F
ca

b
le

co
n
n
ec

to
rs

regular operational state 8148 0 0 4 5 0 0
high processor usage 4 863 0 0 0 0 0

high RAM memory consumption 17 0 812 3 19 3 0
battery failure 15 0 2 3172 295 5 0

low efficiency of the solar panel 9 0 2 216 3436 1 0
antennas misalignment 0 0 0 6 1 4049 31

defects on the RF cable connectors 0 0 0 0 0 3 1724

Table 6.6: SVM Confusion Matrix

Chapter 7

Conclusions

This work presented a proposal for an autonomic solution for fault detection and

diagnosis (FDD) for SWMNs, using artificial intelligence techniques.

To set the artificial intelligence approach a reduced scope of work was determined

by the creation of a fault dictionary. As the fault dictionary was created, the problem

could be seen as a pattern recognition problem, more specifically, a classification problem.

Therefore, machine learning techniques for the classification problem were analyzed.

Several classification algorithms were considered and studied in the process. A perfor-

mance evaluation method had to be defined and the search for the classifier most suitable

for the task has been carried on.

For this purpose, the steps for knowledge discovery in databases were followed. Five

months of network tests were made to populate the database generating a set of examples

to be worked upon in order to produce training, test and validation databases.

A treatment of the data has followed, in the search for the best way to understand and

represent the real phenomena with the gathered data. The data had to be transformed

and selected to achieve the best possible results to this work’s purpose. As an outcome,

of all 38 initially considered attributes to represent the problem, only 11 were considered

relevant through a 24 hours observation period of averages and standard deviations.

With the databases formed, we compared a number of well-known classification al-

gorithms for the problem, namely Naive Bayes, Decision Table, k-NN, SVM and C4.5.

The result of this evaluation showed that the C4.5 and the SVM algorithms had the best

overall prediction performances, with accuracy over 80%. This accuracy levels indicates

that an autonomic solution is, indeed, feasible.

Their result was brought to a validation test. In this test, the C4.5 presented over-

7 Conclusions 56

fitting characteristics, with poor results when new data was used. While the SVM has

shown a good overall performance, but an already expected weak point, the Battery Fail-

ure detection. This problem was solved using a multi-classification solution — the two

classes with higher likelihood of success are presented to the user. With this adjustment,

the classifier presented the correct diagnosis (between the two indicated) in all cases and

the work was considered a success.

As future work, there is an intention to integrate this solution to MeshAdmin so that

MeshAdmin can provide automatic warnings about detected failures on network nodes

before they cause disruptions in the communication services. As a final goal, this solution

will be implemented in the production network of the ReMoTe project.

References

[1] Mohammad Abu Alsheikh, Shaowei Lin, Dusit Niyato e Hwee-Pink Tan. Machine
learning in wireless sensor networks: Algorithms, strategies, and applications. Com-
munications Surveys & Tutorials, IEEE, 16(4):1996–2018, 2014.

[2] David W Aha, Dennis Kibler e Marc K Albert. Instance-based learning algorithms.
Machine learning, 6(1):37–66, 1991.

[3] Ian F Akyildiz, Xudong Wang e Weilin Wang. Wireless mesh networks: A survey.
Computer Networks, 47(4):445–487, 2005.

[4] Yoshua Bengio e Yves Grandvalet. No unbiased estimator of the variance of k-fold
cross-validation. The Journal of Machine Learning Research, 5:1089–1105, 2004.

[5] Mario Bkassiny, Yang Li e Sudharman K Jayaweera. A survey on machine-
learning techniques in cognitive radios. Communications Surveys & Tutorials, IEEE,
15(3):1136–1159, 2013.

[6] Ismail Butun, Salvatore D Morgera e Ravi Sankar. A survey of intrusion detection
systems in wireless sensor networks. Communications Surveys & Tutorials, IEEE,
16(1):266–282, 2014.

[7] Ricardo C Carrano, Luiz Magalhaes, Débora C Muchaluat Saade e Célio VN Al-
buquerque. IEEE 802.11s multihop MAC: A tutorial. Communications Surveys &
Tutorials, IEEE, 13(1):52–67, 2011.

[8] Ricardo Campanha Carrano, Diego Passos, Luiz Magalhães e Célio V.N. Albu-
querque. A comprehensive analysis on the use of schedule-based asynchronous duty
cycling in wireless sensor networks. Ad Hoc Networks, 16:142–164, 2014.

[9] Chih-Chung Chang e Chih-Jen Lin. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Soft-
ware available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[10] Cisco Visual Networking Index Cisco. Global mobile data traffic forecast update.
2014–2019 (white paper), 2015.

[11] William W Cohen. Fast effective rule induction. In Proceedings of the twelfth inter-
national conference on machine learning, pp. 115–123, 1995.

[12] Thomas M Cover. Geometrical and statistical properties of systems of linear in-
equalities with applications in pattern recognition. Electronic Computers, IEEE
Transactions on, (3):326–334, 1965.

References 58

[13] Rafael De Tommaso do Valle e Débora Christina Muchaluat-Saade. Meshadmin: An
integrated platform for wireless mesh network management. In Network Operations
and Management Symposium (NOMS), 2012 IEEE, pp. 293–301. IEEE, 2012.

[14] Jorge Lúıs Machado do Amaral. Sistemas imunológicos artificiais aplicados à de-
tecção de falhas. PhD Thesis, PUC-Rio, 2006.

[15] Jorge Duarte, Diego Passos, Rafael L Valle, Eunice Oliveira, Débora Muchaluat-
Saade e Célio V Albuquerque. Management issues on wireless mesh networks. In Net-
work Operations and Management Symposium, 2007. LANOMS 2007. Latin Ameri-
can, pp. 8–19. IEEE, 2007.

[16] Ahmed Fasih. Modeling and fault diagnosis of automotive lead-acid batteries. 2006.

[17] Usama Fayyad, Gregory Piatetsky-Shapiro e Padhraic Smyth. From data mining to
knowledge discovery in databases. AI magazine, 17(3):37, 1996.

[18] Vinicius Ferreira, Ricardo Carrano, Joacir Silva, Diego Passos e Célio Vinicius Neves
de Albuquerque. Diagnóstico de falhas em redes em malha alimentadas por energia
solar através de mineração de dados. XX Workshop de Gerência e Operação de Redes
e Serviços - SBRC, pp. 53–66, 2015.

[19] Michael C Ferris e Todd S Munson. Interior-point methods for massive support
vector machines. SIAM Journal on Optimization, 13(3):783–804, 2002.

[20] Anna Förster. Machine learning techniques applied to wireless ad-hoc networks:
Guide and survey. In Intelligent Sensors, Sensor Networks and Information, 2007.
ISSNIP 2007. 3rd International Conference on, pp. 365–370. IEEE, 2007.

[21] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann e
Ian H Witten. The weka data mining software: an update. ACM SIGKDD explo-
rations newsletter, 11(1):10–18, 2009.

[22] J. Kamer Han e J M. Pei. Data Mining: Concepts and Techniques. Morgan Kauf-
mann, 3rd edition, 2011.

[23] Trevor Hastie, Robert Tibshirani, Jerome Friedman e James Franklin. The elements
of statistical learning: data mining, inference and prediction. The Mathematical
Intelligencer, 27(2):83–85, 2005.

[24] Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin et al. A practical guide to support
vector classification. 2003.

[25] Guang-Bin Huang, Dian Hui Wang e Yuan Lan. Extreme learning machines: a
survey. International Journal of Machine Learning and Cybernetics, 2(2):107–122,
2011.

[26] IBM Corporation. IBM SPSS Modeler. http://www-01.ibm.com/software/

analytics/spss/products/modeler/, 2015. Acessed: 08/17/2015.

[27] Keki B Irani e Usama M Fayyad. Multi-interval discretization of continuous-valued
attributes for classification learning. In Proceedings of the International Joint Con-
ference on Uncertainty in AI, volume 334, pp. 1022–1027, 1993.

References 59

[28] Rolf Isermann. Supervision, fault-detection and fault-diagnosis methods - an intro-
duction. Control engineering practice, 5(5):639–652, 1997.

[29] Leslie Pack Kaelbling, Michael L Littman e Andrew W Moore. Reinforcement learn-
ing: A survey. Journal of artificial intelligence research, pp. 237–285, 1996.

[30] Ron Kohavi. The power of decision tables. In Machine Learning: ECML-95, pp.
174–189. Springer, 1995.

[31] Ron Kohavi et al. A study of cross-validation and bootstrap for accuracy estimation
and model selection. In International Joint Conference on Artificial Intelligence,
volume 14, pp. 1137–1145, 1995.

[32] Daniel T Larose. Discovering knowledge in data: an introduction to data mining.
John Wiley & Sons, 2014.

[33] José Marinho e Edmundo Monteiro. Cognitive radio: survey on communication pro-
tocols, spectrum decision issues, and future research directions. Wireless Networks,
18(2):147–164, 2012.

[34] Marianthi Markatou, Hong Tian, Shameek Biswas e George M Hripcsak. Analysis of
variance of cross-validation estimators of the generalization error. Journal of Machine
Learning Research, 6:1127–1168, 2005.

[35] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1st edition, 1997.

[36] Luiz Satoru Ochi, Carlos Rodrigo Dias e Stênio S Furtado Soares. Clusterização
em mineração de dados. Instituto de Computação-Universidade Federal Fluminense-
Niterói, 2004.

[37] Oracle Corporation. Oracle Data Mining. http://www.oracle.com/technetwork/

database/options/advanced-analytics/odm/index.html?ssSourceSiteId=

otnru, 2015. Acessed: 08/17/2015.

[38] Sinno Jialin Pan e Qiang Yang. A survey on transfer learning. Knowledge and Data
Engineering, IEEE Transactions on, 22(10):1345–1359, 2010.

[39] Diego Passos, Célio Vinicius N de Albuquerque, Miguel Elias M Campista, Lúıs
Henrique MK Costa e Otto Carlos MB Duarte. Minimum loss multiplicative routing
metrics for wireless mesh networks. Journal of Internet Services and Applications,
1(3):201–214, 2011.

[40] Lili Qiu, Paramvir Bahl, Ananth Rao e Lidong Zhou. Troubleshooting wireless mesh
networks. ACM SIGCOMM Computer Communication Review, 36(5):17–28, 2006.

[41] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[42] Nithya Ramanathan, Kevin Chang, Rahul Kapur, Lewis Girod, Eddie Kohler e Deb-
orah Estrin. Sympathy for the sensor network debugger. In Proceedings of the 3rd
international conference on Embedded networked sensor systems, pp. 255–267. ACM,
2005.

References 60

[43] Irina Rish. An empirical study of the naive bayes classifier. In IJCAI 2001 workshop
on empirical methods in artificial intelligence, volume 3, pp. 41–46. IBM New York,
2001.

[44] J Schmidhuber. A general method for multi-agent learning and incremental self-
improvement in unrestricted environments. Evolutionary Computation: Theory and
Applications. Scientific Publ. Co., Singapore, 1996.

[45] Bruno Siqueira, Diego Passos, Debora Christina Muchaluat-Saade e Celio Albu-
querque. Libr: Id-based routing for linear wireless mesh networks. In Consumer
Communications and Networking Conference (CCNC), 2015 12th Annual IEEE, pp.
461–466. IEEE, 2015.

[46] R Core Team. R: A language and environment for statistical computing. r foundation
for statistical computing, vienna, austria. 2013, 2014.

[47] I. H. Witten, F. Eibe e M. A. Hall. Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann, 3rd edition, 2011.

[48] Ming Xue e Changjun Zhu. A study and application on machine learning of artificial
intellligence. In Artificial Intelligence, 2009. JCAI’09. International Joint Conference
on, pp. 272–274. IEEE, 2009.

[49] Tevfik Yücek e Hüseyin Arslan. A survey of spectrum sensing algorithms for cognitive
radio applications. Communications Surveys & Tutorials, IEEE, 11(1):116–130, 2009.

[50] Yongguang Zhang e Wenke Lee. Intrusion detection in wireless ad-hoc networks.
In Proceedings of the 6th annual international conference on Mobile computing and
networking, pp. 275–283. ACM, 2000.

[51] Xiaojin Zhu e Andrew B Goldberg. Introduction to semi-supervised learning. Syn-
thesis lectures on artificial intelligence and machine learning, 3(1):1–130, 2009.

