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Resumo

As técnicas de aprendizado de máquina têm apresentado soluções eficazes para sistemas
de detecção de intrusões e a maioria dos problemas de cibersegurança. No entanto, a
criação de um modelo de aprendizado de máquina eficaz requer treinamento extensivo
com grandes volumes de dados. O aprendizado federado surge como uma solução para
treinamento colaborativo a partir de várias fontes, compartilhando apenas os parâmetros
do modelo com um agregador central e mantendo os dados localmente. No entanto, a
distribuição de dados entre os participantes do aprendizado federado é fortemente não
Independente e Identicamente Distribuído (não-IID), o que prejudica o desempenho do
modelo global. Apesar dessa dificuldade, a identificação e a disseminação rápida de novos
padrões de ataque à rede são cruciais para melhorar a segurança da rede. Portanto,
métodos que favoreçam o aprendizado rápido e acurado são de grande valia nesse tipo de
cenário. Além disso, os algoritmos de aprendizado federado precisam lidar com eventuais
participantes mal-intencionados, os quais podem intencionalmente prejudicar o treina-
mento com dados aleatórios ou tendenciosos. Esta tese propõe uma solução para acelerar
e melhorar o treinamento de um modelo global em aprendizado federado para o cenário
Sistemas de Detecção de Intrusões (Intrusion Detection Systems — IDS). A solução pro-
posta possui um método seleção de participantes baseada em pontuação. Para pontuar
a contribuição dos participantes, propõe-se um método de pontuação baseado no ganho
de informação que leva em consideração tanto o desempenho individual quanto o desem-
penho coletivo dos participantes. Em aprendizado federado, a seleção de participantes
se destaca pela capacidade de quantificar a contribuição de cada participante para o
treinamento do modelo global, permitindo melhor eficiência na seleção. Essa abordagem
favorece não apenas a melhoria do desempenho do modelo global, mas também reforça a
proteção contra participantes mal-intencionados. A solução proposta também incorpora
um termo de momento global para reter conhecimentos adquiridos nas rodadas anteriores
de agregação. Isso assegura que eventuais alterações abruptas não desviem o direciona-
mento do treinamento. Além disso, apresenta-se a meta-heurística Federated Simulated
Annealing (FedSA) para selecionar hiperparâmetros para cada rodada de agregação. O
FedSA otimiza hiperparâmetros vinculados à convergência do modelo global, reduzindo o
número de rodadas de agregação necessárias, aumentando a velocidade de aprendizado e
disseminação de novos padrões de ataque. O método proposto de seleção de participantes
e o FedSA alcançaram desempenho superior a outras abordagens de aprendizado federado
de estado da arte. A solução alcançou mais de 80% de F1-Score e 90% de acurácia no
conjunto de teste, mesmo na presença de participantes maliciosos. A avaliação mostra
que a abordagem proposta converge em menos de dez rodadas de comunicação, exigindo
até 50% menos rodadas de agregação para alcançar aproximadamente 97% de precisão na
detecção de ataques em comparação com abordagens convencionais de agregação.

Palavras-chave: Aprendizado Federado, Aprendizado de Máquina, Segurança Cibernética,
IDS



Abstract

Machine learning techniques provide accurate solutions for intrusion detection systems
and most cybersecurity problems. However, creating effective machine learning models
requires extensive training with large amounts of data. Federated learning emerges as
a solution for collaborative training from multiple sources, sharing only the model pa-
rameters with a central aggregator and maintaining the data locally. Nevertheless, the
data distribution among federated learning participants is strongly non-Independent and
Identically Distributed (non-IID), which harms the performance of the global model. De-
spite this issue, identifying and rapidly spreading new network attack patterns is crucial
to improving network security. Hence, methods that support rapid and precise learning
are significant in such scenarios. In addition, federated learning algorithms must deal
with malicious participants who can intentionally disrupt training with random or biased
data. This thesis proposes a solution to accelerate and improve the global model training
in federated learning for the Intrusion Detection Systems (IDS) scenario. The proposed
solution has a score-based participant selection method. We propose a scoring method
based on information gain to score the participants contributions. The scoring method
takes into account both the individual and collective performance of the participants. In
federated learning, participant selection is crucial for its capacity to quantify each partic-
ipant’s contribution to the training of the global model, thereby enabling more efficient
and effective selection processes. This approach not only improves the performance of
the global model but also strengthens protection against malicious participants. The
proposed solution also incorporates a global momentum term to maintain knowledge ac-
quired in previous rounds of aggregation. This ensures that any sudden changes do not
divert the training direction. In addition, We proposed a metaheuristic called Federated
Simulated Annealing (FedSA) to adaptive select hyperparameters for each aggregation
round. The FedSA optimises hyperparameters linked to the global model convergence
and reduces the number of necessary aggregation rounds, increasing the speed of learning
and dissemination of new attack patterns. Our proposed participant selection method and
FedSA metaheuristic outperformed other state-of-the-art federated learning approaches.
Our solution achieves more than 80% F1-Score and 90% accuracy in the test set, even in
the presence of malicious participants. The evaluation shows that the proposed approach
converges in less than ten communication rounds, requiring up to 50% fewer aggregation
rounds to achieve approximately 97% attack detection accuracy compared to conventional
aggregation approaches.

Keywords: Federated Learning, Machine Learning, Cyber-Security, IDS.
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Chapter 1

Introduction

The number of connected devices on the Internet will reach 27 billion by 20271. Different

device types connect to various access networks, leading to the Internet of Everything, a

heterogeneous and mutable networking environment [1]. Due to the Internet growth and

heterogeneity, the complexity of mapping the vulnerabilities from connected devices also

grows [2]. Moreover, the spread of the attacking tools (e.g., slowloris, hping3, macof )

enables quick implementation of a network attack.

Intrusion Detection System (IDS) effectively identify already-known network attacks.

However, traditional IDS either deploy a signature database to recognize known attacks

or analyze network behaviour, searching for outliers or anomalous behaviours, which can

lead to false positives [3]. Consequently, traditional IDS are ineffective for detecting new

attack patterns. In contrast, recent Machine Learning-based IDS (ML-IDS) significantly

advances in detecting new attack patterns [4, 5, 6, 7, 8]. Besides learning attacks on an

extensive dataset, ML-IDS learns from new traffic coming from the network as long as

traffic is appropriately labelled. The more data the machine learning model consumes,

the more accurate it becomes [9]. Therefore, an ideal strategy is to create a model that

could learn from the traffic of different networks. Still, it is challenging due to strict data

protection laws, e.g., General Data Protection Regulation (GDPR).

Federated Learning (FL) emerges as a feasible solution to the privacy problem in

collaborative training [10]. FL allows several participants to train a global machine-

learning model in a distributed fashion without data sharing, overcoming centralized

learning [2]. The FL approach enriches the training, building a global model based on

extensive participant data. The centralized approach limits the training to an offline
1Available at https://www.ericsson.com/en/reports-and-papers/mobility-report/dataforecasts/iot-

connections-outlook. Accessed in 10/12/2021
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dataset or data obtained from a single monitored network. In FL, participants train local

models with their local data and share the local model parameters with a central server.

The central server creates an aggregated global model based on those parameters. The

aggregation server selects random participants for training at each iteration [10], called

the aggregation round. The main goal is sharing knowledge without exposing data stored

on participants.

A key challenge in designing federated learning-based IDS is that the network data

used for training the global model is highly Non Independent and Identically Distributed

(Non-IID) [2]. Non-IID data refers to a dataset in which individual data points are not

independently or identically distributed. This leads to potential sample imbalances or

correlations impacting machine learning model performance.

In contrast to distributed machine learning, FL assumes that the server does not access

the participants’ data. The absence of data access makes the training more difficult. The

data dependence and the heterogeneous data distribution pose challenges to the optimal

convergence of the trained model. The optimization issue delays the learning of new

attack patterns.

Furthermore, not all participants contribute to the training of the global model.

Therefore, efficiently selecting participants contributes the most to the training and speeds

up the global model convergence. However, selecting participants is non-trivial since data

always remains private for each participant.

Previous works propose using FL for intrusion detection [11, 12, 13]. Still, these works

disregard the FL optimization issues, and the traditional FL algorithm implies delays in

learning new attack patterns.

In this thesis, we introduce two significant contributions aimed at enhancing the

performance of FL systems. First, we propose FedSA, an adaptive hyperparameter op-

timization method tailored for FL environments. FedSA employs a variant of Simulated

Annealing (SA) to adjust learning rate and local updates dynamically at each aggrega-

tion round, thereby effectively balancing computational load at the participant level and

mitigating the risk of overfitting. Our second contribution is Federated Score-Based Se-

lection (FedSBS), a participant selection method incorporating global momentum into

the global aggregation and local updates. Unlike conventional random selection methods,

FedSBS selects participants based on their contributions, enabling a more equitable and

informed selection process across multiple rounds. Together, these contributions address

key challenges in FL, paving the way for more robust and efficient distributed learning
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systems.

1.1 Motivation

Recent works deploy FL to allow a machine learning-based IDS federation to share learn-

ing without data sharing [12, 11, 14, 15]. However, none of these works addresses the

federated optimization challenges typical of FL. Fast convergence is essential for the

intrusion detection system scenario. The global model must be up-to-date as fast as

possible. The participant network will be vulnerable if the global model delays learning

new attack patterns. The approach to enhance global model convergence in the context

of the IDS scenario is critical for effectively detecting and learning new attack patterns.

To enable the applicability of FL in IDS scenarios, it is essential to tackle the prevalent

optimization challenges inherent in such settings. One key issue is participant selection,

which is typically random in traditional FL aggregation algorithms. However, in FL, the

aggregation server lacks direct access to participants’ data, and the data’s quality sig-

nificantly impacts global model training. Selecting participants with low data quality or

including malicious participants can hinder the training process. Thus, the development

of an efficient participant selection mechanism becomes imperative.

The success of an IDS relies heavily on its ability to adapt and detect emerging at-

tack patterns. However, cyber threats’ inherently dynamic nature demands rapid model

convergence, obviating any possibility for time-consuming bottlenecks. Among these, hy-

perparameter fine-tuning poses a challenge in machine learning environments. In FL, the

complexity is exacerbated due to the diverse nature of participants data. The burden of

fine-tuning hyperparameters can delay the FL training process, impeding the global model

progress and threatening the intrusion detection system. In light of these requirements,

the investigation to devise an approach that mitigates the need for extensive hyperpa-

rameter fine-tuning takes centre stage.

1.2 Goals

The primary goal of this thesis is to propose a robust and effective collaborative training

solution for FL specifically tailored for intrusion detection systems. The proposed solution

aims to resolve optimization challenges inherent in FL, ensuring its secure and efficient

application in the context of intrusion detection.
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1.2.1 Specific Goals

The thesis addresses the optimization challenges related to FL, a mandatory requirement

for the IDS scenario. Thus, the specific goals are:

1. Provide a background of collaborative training and FL for IDSes with privacy solu-

tion architecture;

2. Provide a landscape of the current FL vulnerabilities and attacks;

3. Provide a solution that supplies fast convergence of collaborative training by;

(a) Improving federated learning participants selection;

(b) Developing a convergence concerning aggregation algorithm; and

(c) Improving training with adaptive hyperparameters. Hence, no fine-tuning is

required.

4. Evaluate state-of-the-art FL methods and aggregation algorithms within the context

of network traffic prediction scenarios.

1.3 Contributions

This thesis introduces two contributions: FedSA [16, 17], designed for adaptive hyper-

parameter optimization, and FedSBS [18], focused on participant selection. Both contri-

butions target inherent optimization challenges within the FL systems. In addition, we

implemented a global momentum to improve the aggregation. Global momentum plays

a crucial role in FL by enhancing the stability and convergence speed of model training,

thereby enabling more consistent and efficient learning across decentralized nodes. Be-

sides these two contributions, we also provide a comprehensive review and categorization

of current Federated Learning vulnerabilities [19], which highlights the security concern

about FL systems. The contributions of this thesis are as follows:

1. The FedSA metaheuristic: We have developed an adaptive hyperparameter se-

lection algorithm using the FedSA metaheuristic. The FedSA is a Simulated An-

nealing (SA) metaheuristic variant adapted for FL scenarios. The hyperparameter

selection improves the convergence speed of the FL training. Traditionally, FL

environments have static hyperparameters. However, FL has a dynamic scenario
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that cannot depend on constant values [20]. FedSA metaheuristic learns the train-

ing behaviour and changes the hyperparameters dynamically whenever necessary.

We proposed using the FedSA metaheuristic for an adaptive hyperparameter and

participant selection algorithm due to its aptitude to adapt to the fluid nature of

FL scenarios dynamically. FedSA’s capacity to modify hyperparameters based on

the learning behaviour ensures optimized convergence speed, which is critical for

cyber-security scenarios. In addition to accelerating convergence, FedSA also ob-

viates the traditionally time-consuming step of hyperparameter fine-tuning. This

improvement enhances the velocity of disseminating new attack patterns, promot-

ing efficiency in IDS scenario. We evaluate FedSA proposal and demonstrate that

the proposed scheme outperforms the conventional aggregation approach. We use

CICDDoS2019 and CICIDS2017 as benchmark datasets to simulate a network envi-

ronment. CICDDoS2019 and CICIDS2017 are network dataset comprising normal

and attack network flow samples. ;

2. The Federated Score-Based Selection: We present a participant selection

method called FedSBS to improve convergence in FL training. Our proposed so-

lution enables more efficient model aggregation by selectively choosing participants

based on their contribution and reliability. We employ a participant selection using

epsilon greedy to select the participants using a score we created and a mechanism to

block to avoid over-selecting participants. We propose a scoring formula to quantify

the contribution of each participant. Our scoring formula considers both local and

global losses. This way, our score measures the participant contribution individually

in the group of selected participants. We intend to give a penalty to participants

with low local loss and high global loss and give a reward to the contrary. Our

participant selection protocol has a participant blocker mechanism to promote a

more balanced distribution of participant selection and avoid over-selection. This

mechanism keeps track of the times each participant is selected and determines the

probability of blocking a participant from further selection. As a result, participants

selected multiple times are increasingly likely to be blocked from further selection.

Participant selection is a fundamental aspect of FL due to participants inherent

diversity and unpredictability in such distributed scenarios. Efficient participant

selection ensures that the learning algorithm leverages meaningful contributions

while limiting potential disruption from non-contributive or malicious participants.

Malicious participants may intentionally provide misleading updates to disrupt the

learning process. We evaluate FedSBS by utilizing the CICIDS2017 dataset and im-
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plementing a Dirichlet distribution to simulate an unbalanced data scenario, which

is characteristic of the FL environment;

3. Using global momentum: The solution uses an exponential moving average to

improve the round aggregation performance. This approach stabilizes model per-

formance during training by bridging the gap between local and global objectives.

They can leverage the global perspective for local model optimization by broad-

casting global momentum back to participants. It is important to highlight that

our implementation is inspired by Federated Averaging with Acceleration of Global

Momentum (FedAGM) [21] and tailored to fit our optimization protocol. The in-

troduction of a global momentum term in FL is crucial as it accelerates convergence

by leveraging past gradients and also aids in mitigating the effects of unbalanced

participant contributions. Thus, global momentum enhances learning stability and

performance in a distributed, heterogeneous context.

1.4 Roadmap

The thesis proposal is structured as follows. Chapter 2 discusses related work. The

literature review in this thesis is bifurcated into two main sections: firstly, exploring other

proposals on FL-based IDS, and secondly, examining distinct solutions proposed for the

optimization challenge in the context of FL. We conceptualize FL in Chapter 3. This

Chapter provides a comprehensive review of FL, describing its reference architectures

and research challenges. Chapter 4 describes and categorizes the existing vulnerabilities

within the FL landscape. We can categorise FL attacks in model performance and data

privacy attacks. Chapter 5 describes our first contribution, the FedSA metaheuristic

for adaptive hyperparameter selection. Chapter 6 describes our second contribution, the

FedSBS participant selection method. Finally, we conclude the current work in Chapter 7.



Chapter 2

Related Work

Besides proposing a federated learning-based IDS, the thesis proposal also addresses the

optimization challenge. Then, the related work is divided into two sections. We point out

the Federated Learning-based IDSes in Section 2.1, and Section 2.2 presents the works

that aim to address the optimization issue.

2.1 Federated Learning-based Intrusion Detection Sys-
tems

Previous works propose collaborative learning through an IDS federation using federated

learning, extending the learning perimeter [12, 11, 14, 15].

Nguyen et al. propose a federated learning model for cyber-attack detection in an

access IoT network. The proposed model considers a random participants’ selection for

each round [12]. IoT gateways operate as participants in federated learning, and an IoT

security service provider acts as an aggregation server for models collaboratively trained.

The authors evaluate the proposal in a real smart home environment and successfully

detect 95.6% of attacks in approximately 257 ms without triggering false alarms.

Preuveneers et al. propose to deploy blockchain technology for sharing participants’

parameters in a federated IDS environment [11]. The proposal stores all incremental up-

dates to the machine learning model in the blockchain ledger. Despite the advantages of

shared storage, the authors identify that blockchain generates latency in training. More-

over, blockchain also introduces communication and processing overhead. The proposed

architecture depends on the network nodes to send all their flows via an agent to the IDS

analysis. The proposal requires up to 50 aggregation rounds to achieve 97% of accuracy.
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Preuveneers et al. evaluate their proposal over the CICIDS2017 dataset.

Chen et al. propose the Federated Learning-based Attention Gated Recurrent Unit

(FedAGRU) [14] for IDS. The authors deploy a Gated Recurrent Unit (GRU) Neural

Network but replace the output layer with a Support Vector Machine (SVM). The Global

aggregation is asynchronous, i.e., the server does not wait for all selected participants

to send their parameters. By correlating the parameters, the participants compare their

model updates with the current global model at each global iteration. The participants

only send their parameters if their update is relevant to the training.

Li et al. propose a distributed IDS using federated learning in the Satellite-Terrestrial

Integrated Network (STIN) scenario [22]. STIN is a valuable supplement to the wireless

network allowing large-capacity information transmission service to space access networks

and terrestrial networks. Besides using federated learning for distributed IDS, the au-

thors also developed a dataset applied to the STIN challenges and limitations. The

authors adapted the federated learning algorithm for the STIN scenario, proposing an

efficient processing time synchronization, considering the satellites network limitations.

The datasets were crafted in a prototype containing approximately forty nodes and eleven

simulated attack types. The authors used Convolutional Neural Network (CNN) as the

deep learning model.

Zhao et al. proposed an intrusion detection based on commands in Command Line In-

terface (CLI) [23]. The author used the Long Short-Term Memory (LSTM) model to pro-

vide richer semantic information in feature space combined with context. The author com-

pared their proposal with centralized learning. The proposal achieve better performance

since the model is built collaboratively. However, according to the simulation results,

the performance of Federated Learning-based Long Short-Term Memory (FL-LSTM) and

Centralized-LSTM is very close.

Mothukuri et al. proposed a federated learning approach using an ensemble to enable

anomaly detection on the Internet of Things (IoT) networks [24]. The authors used Gated

Recurrent Unit (GRU) neural network models to train the machine learning model on a

Modbus network dataset. The authors experimented with both GRU and LSTM, and

GRU models outperformed LSTM to achieve a higher accuracy rate and be computation-

ally inexpensive. In the paper, the authors used a Random Forest classifier to ensemble

seven global model outputs.

Rey et al. propose a federated learning-based IDS using Multilayer Perceptron (MLP)

and autoencoder models [25]. The authors used the N-BaIoT, a dataset modelling net-
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Table 2.1: Comparative Analysis of Existing Federated Learning-based Intrusion Detec-
tion Systems, Including our solution. In this table, ‘H.P.’ denotes Hyperparameter and
‘G.M.’ signifies Global Momentum.

Method Participant
Selection

H.P.
Selection G.M. Baseline Model

Our Solution FedSBS FedSA Yes

FedAvg, Oort,
Wang et al.,

FedAGM, FedDyn,
Slowmo.

MLP

Nguyen et al. Random Static No Centralized GRU
Preuveneers
et al. Random Static No Centralized AutoEncoder

FedAGRU Random Static No FedAvg, CMFL GRU

Li et al. Random Static No
Centralized, and
FedAvg (Different

CNN Architechtures)
CNN

Zhao et al. Random Static No
Centralized, and

FedAvg (CNN and
LSTM)

CNN and
LSTM

Mothukuri
et al. Random Static No Centralized GRU and

LSTM
Rey et al. Random Static No Centralized MLP
Rahman
et al. Random Static No Self-learning and

Centralized ML Not provided

work traffic of several real IoT devices while affected by malware. The authors compare

centralized, distributed, and federated learning architectures.

Rahman et al. proposed a Federated Learning-based scheme for IoT intrusion de-

tection [13]. The author evaluated the proposal considering real scenarios and intrusion

attacks. For evaluation, the author compared federated, centralized, and self-learning

approaches. Federated learning outperformed the other approaches in almost all commu-

nication rounds.

The works mentioned above demonstrated the federated learning massive potential

for training a global model from multiple sources with privacy. However, none of these

works accelerates the convergence of the global model to speed up the learning of new

attack patterns. Table 2.1 provides a comparison of our solution to the state-of-the-art

FL-based IDS solutions.
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2.2 Federated Learning Optimization Challenge

Unlike the previous works, our proposal is concerned with the fast convergence of the

global model. The faster the convergence, the faster the model learns with the partic-

ipants’ data. Other works aim to solve optimization challenges from federated learn-

ing [26, 27].

Nguyen et al. uses Simulated Annealing to optimize federated learning training [26].

The technique is called Simulated Annealing-based Federated Learning (SAFL). The

SAFL performs the local update based on the aggregation server feedback. The selected

participants disturb some local parameters based on the Simulated Annealing probability

at each aggregation round. The SAFL avoids local optimal or overfitting the local model.

The authors used the MNIST, Fashion-MNIST, CIFAR10, and Google speech commands

datasets for evaluations.

Smith et al. propose MOCHA, an optimization structure for the federated envi-

ronment, which allows the customization of federated learning through the learning of

separated and related models for each device [27]. MOCHA calibrates on the resource

restrictions of a participating device, such as network conditions and CPU states of the

devices. The method has verifiable theoretical convergence guarantees, but it is limited

in scale to massive networks and restricted to convex objectives [27]. For Evaluation, the

authors used Google Glass (GLEAM), Human Activity Recognition, and vehicle sensor

datasets.

Corinzia et al. proposed an algorithm for federated multi-task learning, which extends

the FL paradigm to handle real-world federated datasets that show statistical hetero-

geneity among devices [28]. The algorithm is designed to work with general non-convex

models. It uses approximated variational inference to perform learning on the federated

network, treating it as a star-shaped Bayesian network. The aggregation server aggre-

gates the model parameters received from each participant and uses them to compute a

posterior distribution over the shared model parameters. Variational inference is used to

approximate this posterior distribution.

Kim et al. proposed FedAGM to use global momentum to maintain knowledge from

previous aggregations [21]. The global momentum prevents performance instabilities

during collaborative training, reducing the gap between the local and global objective

functions. The FedAGM algorithm aims to send the global momentum to the selected

participants, enabling the incorporation of global momentum into the local updates at
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each participant.

Wang et al. propose an algorithm to determine the trade-off between local updates

and aggregation rounds [20]. The authors analyze the convergence boundary of federated

learning based on the gradient descent from a theoretical perspective and propose a new

convergence boundary. The convergence boundary incorporates the data distribution,

usually unbalanced, among participants. Determining the ideal frequency of aggregation

rounds is possible, saving computational resources. For evaluation, the authors used the

MNIST dataset.

Aiming to ensure convergence, Chiu et al. propose FedProx, which modifies the global

loss function, also including a tunable parameter that restricts how much local updates

affect the prevailing model parameters [29]. The FedProx algorithm is adaptively tuned.

Model updates are adjusted to have less affect current parameters when training loss

increases. Likewise, Huang et al. propose the LoAdaBoost Federated Averaging (FedAvg)

algorithm, in which participants train the model on their local data and compare the

cross-entropy loss with the median loss from the previous training round [30]. If the

current cross-entropy loss exceeds the previous one, the model is retrained before global

aggregation, increasing learning efficiency.

Previous works implemented participant selection to address FL optimization chal-

lenge. Song et al. proposed a reputation-based FL for wireless networks that employ

a beta distribution function to score the reputation of the participants [31]. The au-

thors also proposed a reputation-based scheduling policy that considers wireless channel

problems, such as interference and poor connection, for the selection. Besides evaluating

participants’ contributions, the reputation schemes have also been evaluated to detect

malicious users [31].

Lai et al. proposed Oort, a guided participant selection for FL [32]. Oort prioritizes

participants with high local loss and can run local training quickly. The authors modeled

the participant selection as a multi-armed bandit problem, where each participant is an

“arm” of the bandit, and the score obtained is the reward [32]. Then, the participant se-

lection scheme can either explore non-selected participants or exploit the already selected

ones.

Nishio et al. proposed a participant selection protocol called Federated Learning with

Client Selection (FedCS) [33]. FedCS is a framework for Multi-access Edge Comput-

ing (MEC) environment. FedCS first requests some resource information for a subset of

participants. Based on this information, FedCS selects the maximum participants that
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fulfil pre-defined minimum resources. The authors later extended their work to partic-

ipants with different data distributions [34]. Table 2.2 compares our solution with the

state-of-the-art proposals addressing the statistical challenge of FL, where H.P. repre-

sents Hyperparameter, B.M. denotes Blocking Mechanism, and G.M. stands for Global

Momentum.

2.3 Discussions and Remark

Previous works aim to use federated learning for federated IDS. However, these works do

not address a crucial issue implied in the federated learning scenario, the global model

convergence. Other works aim to solve the convergence. Nevertheless, these works fo-

cus on other applications of Federate Learning, such as image processing [20, 27, 26] or

Natural Language Processin (NLP) [26]. Our proposal manages the adaptive selection of

hyperparameters related to the global model convergence and the participant selection.

None of those mentioned above focuses on providing global-model adaptive changes into

hyperparameters based on loss-function values from previous aggregation rounds. Fur-

thermore, our proposal addresses the optimization challenge by providing a participant

selection method.
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Table 2.2: A comparative evaluation of our solution against state-of-the-art federated
learning proposals for optimization challenges.

Method Participant
Selection

H.P
Selection B.M. G.M Baseline Scenario

Our Solution

Selection
based on
local and
global loss

FedSA Yes Yes

FedAvg,
Oort,
Wang et al.,
FedAGM,
FedDyn,
Slowmo.

Intrusion
Detection

SAFL Random
Selection Static No No FedAvg

Intrusion
Detection, and
Speech
Recognition

MOCHA Random
Selection Static No No CoCoA

Human Activity
Recognition, and
Vehicle Sensor

Corinzia
et al

Random
Selection Static No No

FedAvg,
and
FedProx

Image
Classification,
Natural Language
Processing,
Vehicle Sensor,
and
Human Activity
Recognition

FedAGM Random
Selection Static No Yes

FedDyn,
FedCM,
FedAdam,
FedProx,
and FedAvg

Image
Classification

Wang et al. Random
Selection Static No No FedAvg Image

Classification

FedProx Random
Selection Static No No

FedAvg,
and
Centralized

Image
Classification, and
Object Detection

LoAdaBoost Random
Selection Static No No FedAvg Healthcare

Song et al.
Selection
based on
accuracy

Static No No FedAvg Wireless Channel
Problems

Oort
Selection
based on
local loss

Static Yes No Yogi, and
Prox

Image
Classification,
Natural Language
Processing, and
Speech
Recognition

FedCS

Selection
based on
participants
information

Static No No FedLim Image
Classification



Chapter 3

Federated Learning

Machine learning techniques have shown excellent performance in solving complex prob-

lems in the last few years [9, 35]. However, machine learning models require a large dataset

for training, especially for deep learning [19]. Deep learning performance considerably in-

creases when exposed to a large amount of data [36]. Collecting data from diverse sources

provides a solution to data acquisition [37].

The conventional cloud computing or cloud-centric method involves mobile devices

acting as data collection points that transmit the collected data to centralized cloud

servers. Subsequently, the cloud servers process the data by performing various analyt-

ical and computational tasks [38]. The cloud-centric approach is widely used in several

scenarios where the data is generated by local devices and processed by a system in the

cloud. It is important to highlight that the processing system must not be machine

learning-based [39, 40, 41]. A potential implementation for healthcare monitoring using

a cloud-centric approach involves equipping a patient with IoT monitoring devices that

generate sensor data. The data is subsequently transmitted to a cloud-based system that

utilizes predictive modelling to anticipate potential diseases [39]. Unfortunately, central-

ized data merging for training a machine learning model harms data privacy protected by

personal data protection laws in several countries worldwide.

Increasingly strict private data protection policies limit cloud-centric approaches to

extracting knowledge from remote data. Personal data protection laws stipulate rights to

data owners and obligations to institutions that hold data. A prominent law is the GDPR1,

in force throughout the European Union (EU), which establishes guidelines on storing

and processing personal data in the EU [42]. The GDPR emphasizes the importance
1Available at https://gdpr-info.eu/. Accessed on 07/11/2022.

https://gdpr-info.eu/
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of protecting individuals’ fundamental rights and freedoms in handling their data [43].

It has inspired other countries2 to adopt similar guidelines, such as the Lei Geral de

Proteção de Dados (LGPD) in Brazil, the California Consumer Privacy Act (CCPA) in

the United States, and the Personal Information Protection and Electronic Documents

Act (PIPEDA) in Canada. In Brazil, the LGPD identifies the entities, either a public or

private organization, that carry out any processing operation on the personal data [44].

Among the duties established for these entities is collecting explicit consent from the

data owner and providing reports that identify the processing operations applied to the

data, including the specification of its storage location, data masking, and data protection

measures.

On top of privacy concerns, the cost of uploading raw data to the cloud also presents a

significant challenge for the cloud-centric approach. Uploading data from a mobile device

in an area with a poor network connection, for example, causes long delays to the training

due to low throughput. The cloud-centric approach results in propagation delays that can

cause unacceptable latency for real-time decision-making applications, such as anomaly

detection [45] —– transferring data to the cloud for processing burdens both core and

access networks. Overload is even more relevant when considering unstructured data,

such as text, voice, or video. The restrictions of sending data to the cloud (e.g., band and

delay) are critical when cloud-centric training depends on wireless access networks [37].

Thus, current proposals consider developing mobile applications at the MEC [33], in

which training is performed by three distinct actors: devices, edge, and cloud. The

training anchored in the MEC model incurs high communication costs and is unsuitable for

constant retraining applications [2], such as smart keyboards. Furthermore, outsourcing

computing and data processing on edge servers involves transmitting potentially sensitive

personal data, exposing privacy-sensitive data.

The aforementioned limitations of the cloud-centric approach have led to the de-

velopment of FL. This collaborative learning solution addresses issues such as privacy

preservation and communication efficiency [10]. By allowing training with real data from

mobile devices and preserving privacy-sensitive information, FL enables machine learning

algorithms to run collaboratively without transferring private data to a cloud server. As

a result, FL is a critical component in ensuring data privacy in distributed environments.

FL has two main entities, the participants — often referred to as clients — that

train the machine learning models with their personal data and the aggregation server
2Available at https://www.dlapiperdataprotection.com/. Accessed on 07/05/2023.

https://www.dlapiperdataprotection.com/
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that aggregates the local models, generating the global model [19]. The global model

aggregates knowledge of participants’ local data in a single model. Participants perform

the following tasks: i) every participant must retrieve parameters from the global model,

ii) selected participants must update their local models with their data, and then iii) send

the updated local parameters of the models to the server. The aggregation round is

the process of updating the global model with data stored on participants, uploading

the parameters, and performing aggregation. The aggregation server is responsible for

controlling the aggregation rounds, selecting a subset of participants, and aggregating

the updates provided by the selected participants to improve the global model. The

server randomly selects a subset of participants for the model update at each aggregation

round. The federated approaches introduce the concept of using local computational

resources, such as Central Processing Unit (CPU) or Graphics Processing Unit (GPU),

for model training while participants can keep their data secure and private. Thereby,

FL presents itself as a powerful approach to preserving privacy. Since data is always

processed locally, the global operation aggregates the models without accessing the data

stored on participants.

As FL enables the use of large amounts of data while preserving user privacy, it has

become a popular solution in many areas, such as cyberattack detection, vehicle networks,

smart healthcare, and IoT in general [11, 46, 47, 48, 49]. Unfortunately, the FL approach

presents new vulnerabilities and security challenges. For example, a malicious entity may

infer the honest data stored on participants despite FL sharing only the parameters of

the model. The malicious entity may be a participant or an aggregation server willing to

know the data stored on honest participants [50]. In addition, a malicious participant may

contaminate the global model with poisoned models and data. The malicious participant

may intentionally compromise the global model to mispredict a specific class or degrade

the performance of the model [51]. Hence, achieving FL assumptions requires mechanisms

to protect participants’ private data and the global model performance.

3.1 Collaborative Machine Learning

Collaborative machine learning has emerged as an approach that enables distributed pro-

cessing of a vast amount of available data. This data is necessary to train the ever more

sophisticated machine learning models. However, in order to understand collaborative

learning, we must first define centralized learning, as it serves as a basis for comparison

and contrast to collaborative learning.
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Centralized machine learning training is an approach for machine learning models

where all data is collected and stored in a central location or server. The owner or an au-

thorized entity typically collects the data and performs the model training. Furthermore,

in a centralized approach, the model is trained on the entire data set on a central server

or cluster of servers. Such an approach is most useful when the training entity owns or

has permission to access the data.

Often, the training in the centralized approach is performed by a cluster of servers

in a data center to decrease the training time. Participants can call each server in the

cluster. The participant is a node within the cluster that contributes to the process-

ing of the machine-learning model. For training a machine learning model in a cluster,

every participant has access to the entire dataset and is responsible for computing a por-

tion of the model. After every participant computes their part of the machine learning

model, a reduce function creates the model [37, 4, 52]. MapReduce, Hadoop [53], and

Apache Spark [54] are well-known implementations of centralized machine learning with

distributed processing [37]. Figure 3.1(a) shows centralized training on a cluster server

architecture, in which the participants have full access to a single dataset shared between

nodes. Unfortunately, this approach has a few downsides, including privacy concerns

around sharing sensitive data with a central cluster of servers and the potential for the

training process to become a bottleneck as the dataset grows. The centralized approach

may be unfeasible in scenarios where the central entity is now the data owner.

Decentralized training is a machine learning training paradigm in which each partici-

pant trains their model to contribute to developing a global model. Decentralized training

has at least two entities, the participants and the parameter server [55]. The parameter

server is responsible for managing tasks among participants. On the other hand, the par-

ticipants are responsible for performing the tasks demanded by the parameter server using

their local data [55]. The parameter server is fundamental to speeding up the training

process and allocating computational resources through an interface to train the model

efficiently. The parameter server is also responsible for combining the participant models

into a single global model. Figure 3.1(b) shows that each participant can access a local

dataset, and the parameter server coordinates the participants. It is worth highlighting

that the parameter server cannot access the participant data.

Training in the FL approach is decentralized. The parameter server is called the

aggregator server, which has no control or access over the data stored on participants.

Its function is to select participants and aggregate the updated parameters received by
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(a) In centralized training in a cluster, each
participant computes a piece of the model
in a data center. The reduced function can
be performed by one of the participants.
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(b) In decentralized training, each partici-
pant has a local dataset, but all nodes com-
pute a model alongside the parameter server
to create a global model.

Figure 3.1: Comparison of Centralized and Decentralized Training Architectures. The
blue rectangles represent the tasks performed on the participant side and the grey box on
the server side. The green ellipse represents the machine learning model.

selected participants. The participant can refuse to participate or even lose connection

during the training.

3.2 Federated Learning Model Formalization

The FL system consists of two main entities: the participants, who own the data, and

the aggregation server, which owns the global model. Let N = {1, ..., n} be the set of

participants. Each participant n has its private dataset Dn, n ∈ N , and uses their dataset

Dn to train a local model wt
n at every aggregation round t. In each aggregate round, the

aggregation server randomly selects a subset of the participants St,St ⊂ N . Each selected

participant sends only the local model parameters to the aggregation server. Then, the

aggregation server aggregates all parameters from the selected participants to generate

an updated global model wt
G, where t is the current aggregation round. The participants

update the local models for τ local updates before sending the parameters to the server for

global aggregation. After the global aggregation, the aggregation server sends the global

model wt
G to all federated participants. The participants update the global model wt

G

with their local dataset in the aggregation round t+1. The aggregation round refers to a

specific stage in the training process of the machine learning model where the participating

devices send their locally computed model updates to a central server for aggregation. An
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underlying assumption is that participants are honest, i.e., they use their actual private

data to train and send the proper parameters to the server, and they are not attempting

to threaten the training.

The training consists of at least three basic steps in each aggregation round [19]. The

first step is Local Update, the second is Participant Selection, and the last is Global

Aggregation. Before these three basic steps, the aggregation server creates the initialized

global model, generating random parameters, usually from a normal distribution. This

initial model is set with random parameter values, usually from a normal distribution, a

process called Initialization. The server also specifies the training hyperparameters, such

as learning rate (η), local updates number (τ), and mini-batch size (B). The three basic

steps of the training are described as follows:

1. Local Update. Based on the global model wG received from the server, the se-

lected participants use their local data and processing power to update the model

parameters for τ local iterations, generating wn. The goal of the participant n in

the aggregation round t is to find the optimized parameters wn that minimize the

local loss function Fn(wn).

2. Participant Selection. The server randomly selects the subset St,St ⊂ N of

participants for training. Only the selected participants will send their parameters

to the aggregation server.

3. Global Aggregation. The server aggregates the parameters of the selected par-

ticipants and updates the global model wG on every participant. The goal of the

server is to minimize the global loss function F (wG). A global aggregation occurs

each aggregation round.

The three steps are repeated until the convergence of the global loss function or the

algorithm meets a stop condition.

Machine learning models have a set of updated parameters based on training data.

A training data sample j has two parts. The first part is the vector xj, which are the

features of the sample j that are the input to the machine learning model; the other

part is yj, the desired output of the model. Each model has a loss function for training

the model. The loss function calculates the error of the predicted value based on each

sample’s desired value yj. The training process minimizes the loss function based on a

training dataset. The loss function is different according to the problem. Besides the
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local loss function Fn(wn), in FL, we have the global loss function, which is defined by

Equation 3.1. The global loss function measures the loss of the global model considering

all the selected participants, as follows:

F (wt
G) =

N∑
n=1

|Dn|
|D|

Fn(wn), (3.1)

where |.| denotes the cardinality of a set. Assuming that D =
⋃N

n=1 Dn and Dn ∩Dn′ = ∅
∀ n ̸= n′.

Note that F (wt
G) cannot be calculated directly without sharing information among

participants [20]. The pieces of information shared by the participants are the dataset

size |Dn| and the local loss Fn(w
t
n). The optimization problem is then to minimize F (wG),

i.e., to find w∗
G = argminF (wG).

It is important to highlight that the local and global loss functions are almost iden-

tical. It is because the global loss function F (wG) is the weighted sum of the local loss

function of the participants Fn(w), as demonstrated in Equation 3.1. FL works with mod-

els based on Stochastic Gradient Descent (SGD) methods [10], such as neural networks,

linear regression, and support vector machines. Gradient, in simple terms, means a sur-

face slope direction. Therefore, the gradient descent is the direction to reach a surface

minimum point. Hence, the main goal of the gradient descent algorithm is to find the best

parameters to minimize the loss function. Thereupon, the model parameters are updated

using the partial derivative of the loss function concerning the parameters of the model

wt
n for each sample in the entire dataset. However, this process causes overhead if the

dataset has a large number of samples. SGD is a variant of the gradient descent that aims

to minimize overhead. Figure 3.2 shows a difference between gradient descent and SGD.

In SGD, the parameters are updated in mini-batches at each epoch instead of using the

entire dataset samples. Mini-batch denotes the total data used to calculate the gradient

at each iteration [56]. That is the reasoning for choosing a subset of participants at each

aggregation round in FL instead of asking for the local model of every participant.

In FL, the aggregation server cannot preprocess the dataset, as in centralized mod-

els. Besides, federated optimization properties are different from a typical distributed

optimization problem, as follows:

1. Non-IID data. Local datasets are based on user usage and do not have the same

probability distribution, and the samples are dependent. The dependency is due to
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Gradient Descent

(a) The gradient descent uses the entire training
dataset to compute the directions to the global
minimum.

Stochastic Gradient Descent

(b) SGD updates a small data shard, called mini-
batch. SGD takes more steps toward the global
minimum but is computationally cheap.

Figure 3.2: Comparison of Gradient Descent and Stochastic Gradient Descent. (a) Gra-
dient Descent is a deterministic optimization algorithm that takes large steps to converge
to a minimum. (b) Stochastic Gradient Descent is a variant of Gradient Descent that
takes smaller steps but is less computationally expensive.

the context of the use of each participant;

2. Unbalanced Data. Some users have larger datasets with more samples than oth-

ers. The local datasets can also be an imbalanced dataset that stands for a dataset

with distinct class proportions;

3. Large number of participants. The number of participants in a federated opti-

mization is expected to be large. The FL algorithm must handle the massive number

of participants. For example, the smart keyboard of Google uses FL for next words

prediction with millions of clients [57];

4. Limited communication. Mobile and IoT devices, typical of a FL environment,

are often disconnected or have low throughput connections.

3.2.1 The Federated Averaging Algorithm

The first and most used aggregation algorithm for FL is FedAvg [10], represented in

Algorithm 1. FedAvg convergence has been empirically proven, particularly for problems

where the loss function is non-convex [2]. However, FedAvg does not have convergence

guarantees and may diverge in practical scenarios when data is heterogeneous [58].

Google researchers implemented FedAvg on Gboard [57]. The Gboard is a smart

keyboard for next-word prediction. Since then, other studies have explored FL in a

range of scenarios where data is sensitive, for example, developing predictive models for

health diagnosis [48] to promote collaboration between hospitals [59] and Government
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agencies [60].

Algorithm 1: Federated Averaging pseudo-code [10].
Input: Local mini-batch size B, number of local updates τ , number of

participants per aggregation round µ, learning rate η, number of
aggregation rounds T

Output: Global model wG

1 [ participant n - Update the local model ]
2 Function LocalUpdate(n, w)
3 Split the local dataset Dn into mini-batches of size B creating the set Bn

4 for each local_epoch from 1 to τ do
5 for each b ∈ Bn do
6 wn ← wn − η∇Fn(wn; b)
7 end
8 end
9 return wn

10 [Server side - Performs a global weighted average using the selected local
parameters of the models ]

11 INIT wG

12 for each iteration t from 1 to T do
13 Randomly selects a subset Sn ∈ N of size m
14 for each participant n ∈ Sn do
15 wn ← LocalUpdate(n, wG)
16 end
17 wG =

∑N
n=1

Dn

D
wn

18 end

The FedAvg algorithm is SGD-based because SGD optimizes the parameter of the

model based on a gradient vector ∇Fn(wn) pointing to the direction in which the model

should evolve. It is simple to perform operations in the gradients of multiple participants.

Another point is that deep learning models lean on SGD and variants method to compute

parameter optimization [10].

For each aggregation round t, FedAvg algorithm randomly selects a subset of partic-

ipants, St ∈ N , which performs the local update. Each participant computes ∇Fn(wn),

which are the gradients of their local data for the current model wn, and the server

aggregates these gradients by applying the update:

wG ← wG − η

N∑
n=1

Dn

D
∇Fn(wn). (3.2)

The hyperparameter η is the learning rate and directly influences the convergence

speed. A small learning rate implies a smooth trajectory and small weight changes at each
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iteration. A very high learning rate implies a more significant weight change, increasing

convergence speed. However, it can also lead to fluctuations around a local minimum. An

equivalent and commonly used aggregation type is:

wn ← wn − η∇Fn(wn),∀n; (3.3)

and updated as:

wG ←
N∑

n=1

Dn

D
wn. (3.4)

Each client locally performs τ gradient descent steps on the current model using its

local data, and the server then computes a weighted average of the resulting models.

τ controls the local train epochs amount. Hence, three main parameters control the

computation amount: i) the portion of participants that perform computation in each

aggregation round (parallelization); ii) τ , the number of training iterations each partici-

pant performs on their local dataset; iii) and B, the local mini-batch size used for local

updates.

Algorithm 1 follows the FL three basic steps aforementioned. In step 1, the server

starts the training (lines 11 - 16). Then, in step 2, participant n performs the local training

and optimizes its loss function on the local dataset mini-batches (lines 2 - 9). In iteration t

(line 17), the server reduces the overall loss by aggregating the average gradients received

from the participants. The FL training process will continue until the global loss function

achieves a desirable loss or reaches a maximum aggregation round number.

3.3 Federated Learning Reference Architectures

There are three general architectures for a FL system: horizontal FL, vertical FL, and

federated transfer learning [9]. We describe each architecture based on a matrix. The

rows represent the sample space, and the columns represent the feature space.

3.3.1 Horizontal Federated Learning

Horizontal FL is the most commonly used FL architecture. The main characteristic of

this architecture is that the n participants have the same data structure, i.e., the dataset

of participants have the same feature space, with a different sample space, as shown in

Figure 3.3, where the blue rectangle represents the dataset of participant A, the green
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rectangle the dataset of participant B, and the gray rectangle represent the label space

of both datasets. An example is when multiple hospitals collaborate to train a machine-

learning model for medical diagnosis. Each hospital has its own set of patients with unique

medical records, but they all share the same feature space, such as patient age, medical

history, and test results. By participating in federated learning, the hospitals can jointly

train a model without sharing sensitive patient data directly, thereby maintaining patient

privacy.

A conventional assumption is that the participants are honest, while the server is

honest-but-curious, which means that the server maintains the functionality of the FL

environment but is willing to discover participant data. Therefore, no information leakage

from any participant to the server is allowed [61].
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Figure 3.3: Horizontal FL uses datasets with the same feature space but differs in the
sample space.

A well-known challenge in the horizontal FL architecture is to protect sensitive data

from an honest-but-curious server [9]. Even sharing only the parameters of the model, it

is still possible to infer data stored on participants. The most used techniques to protect

the parameters of the model are homomorphic cryptography [61] and Secure Multiparty

Computation (SMC) [62].

3.3.2 Vertical Federated Learning

Vertical FL or feature-based FL, as shown in Figure 3.4, applies to cases where two

datasets share the same sample space but differ in the feature space. For example, two

companies operating in the same city may have similar customers but have different in-

formation about those customers. Vertical FL is the process of aggregating these different

features and computing the loss and gradients with privacy-preserving to build a model

with data from both parties collaboratively [9].

Some privacy-preserving machine learning algorithms for vertically partitioned data
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have been proposed in the literature, including cooperative statistical analysis [63], as-

sociation rule mining [64], secure linear regression [65], classification [66], and gradient

descent [67].

Some works propose a federated vertical learning scheme to train a privacy-preserving

logistic regression model [68, 69]. These works apply Taylor expansion to the loss function

and adopt homomorphic cryptography for privacy-preservation gradient descent calcula-

tions.
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Figure 3.4: In vertical FL, the dataset has some similar samples but with different features.
Before starting the training, participants A and B securely select the intersection of the
sample spaces.

Suppose companies A and B want to collaboratively train a machine learning model

in their business systems, each with its data. Furthermore, Company B also has labeled

data that the model needs to predict. For privacy and data security reasons, A and B

cannot exchange data directly. A third entity C is involved to ensure data confidentiality

during the training process [9]. Entity C is assumed to be honest and not collude with

A or B, whereas parties A and B are honest-but-curious about each other. Trusting in

entity C is a reasonable assumption, as part C can be performed by authorities such as

governments or replaced by a secure compute node [9]. Vertical FL has two parts, as

shown in Figure 3.5. In part 1, an alignment between entities is done using cryptography.

Since the two companies have different customers, the system uses cryptography-based

user Identification (ID) alignment techniques to confirm mutual users in A and B [70, 71].

The system does not use samples of users that do not overlap among the entities during the

alignment of entities. Part 2 consists of the encrypted model training. After determining

similar users, the model uses the data from those samples to train the machine learning

model. We divide the training process into the following four steps [9].

1. Entity C creates homomorphic additive cryptographic pairs of keys and sends the

public key to A and B, and encrypts masks for A and B to apply;
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2. A and B encrypt and exchange their intermediate results using C’s mask for gradient

and loss calculations;

3. A and B calculate the encrypted gradients and add an extra mask. B also calculates

the encrypted loss. A and B send encrypted values to C;

4. C decrypts and sends the decrypted gradients and loss back to A and B. A and B

unmask the gradients and update the model parameters.

Entity C
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Encrypted alignment between the 
parties
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Encrypted 
Training
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Figure 3.5: The vertical FL system architecture. The entity creates the key pairs in
the first step and sends the public key to the participants. In step 2, A and B conduct
the security verification to find intersections in their samples, i.e., mutual customers.
Participants send their parameters encrypted and masked for aggregation by entity C in
step 3. Finally, in step 4, entity C returns the result to the participants.

In short, the vertical FL system helps participants establish a “commonwealth” strategy

without affecting data privacy.

A vertical FL system typically assumes honest-but-curious participants. For example,

in a two-party case, both parties are not malicious; however, one of the parties may collude

with an adversary. An adversary can only learn information from the dishonest participant

since the adversary cannot participate. The third participant, C, is introduced to facilitate

safe processing between the two parties. In this case, it is an assumption that this third

party is not in collusion with either party. Secure multiparty computing provides formal

proof of privacy for these protocols [72]. At the end of learning, each party has only the

model parameters associated with its features. Therefore, the two parties must collaborate

to generate the output model at the inference time.



3.3 Federated Learning Reference Architectures 27

3.3.3 Federated Transfer Learning

Federated transfer learning applies to scenarios where datasets differ in the samples and

the feature space. An example is the case of two different institutions operating in different

countries [9]. In this case, transfer learning techniques [73] provide solutions for the entire

sample and feature space in a FL environment, as seen in Figure 3.6.
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Figure 3.6: In federated transfer learning, participant A wants to learn from the entire
dataset of participant B. For this, transfer learning techniques are performed, which trans-
fer knowledge from one model to another without exposing the dataset used to train the
source model.

Suppose parties A and B have only a small set of overlapping samples. The main

interest is to train a model to predict the labels for the participant A dataset (destination

domain) using the participant B model (source domain) knowledge. The architecture

described in vertical FL works only for the overlaid dataset samples. Federated transfer

learning does not change the general architecture shown in Figure 3.5. However, it changes

the intermediate results exchanged between parts A and B. Transfer learning usually

involves exchanging common representation from one model to another to minimize the

error of the destination domain party, using the knowledge of the source domain party

(B, in this case). Therefore, the gradient calculations for parties A and B differ from the

vertical FL scenario. Federated transfer learning is an extension of existing FL systems

as it deals with problems that exceed the scope of existing FL algorithms.

One possible example is two hospitals, Hospital A and Hospital B, which aim to

train a medical diagnosis model for a specific disease. Hospital A has a large dataset of

patients with this disease (source domain), while Hospital B has a smaller dataset. Still,

it primarily focuses on diagnosing the disease in elderly patients (destination domain).

The two hospitals have only a small set of overlapping samples.

The main interest is to train a model that can accurately predict the diagnosis for

elderly patients in Hospital B’s dataset, leveraging the knowledge from Hospital A’s model.

In this federated transfer learning scenario, Hospital A first trains a base model using its
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extensive patient data. Then, Hospital B fine-tunes this pre-trained model with its local

dataset of elderly patients without sharing the raw data with Hospital A.

Through this process, Hospital B can minimize the error in the destination domain

while benefiting from the knowledge obtained from the source domain (Hospital A) and

maintaining data privacy. Thus, the federated transfer learning extends the capabilities

of traditional federated learning by transferring knowledge from one domain to another

while addressing unique challenges in each domain.

3.4 Data Sharing and Processing in Federated Learning

Current FL applications use MEC and SMC techniques to ensure low latency and privacy.

MEC brings the aggregation server near to the user, while SMC encrypts the parameters

of the participants, enabling arithmetic operations.

3.4.1 Multiaccess Edge Computing

MEC is a technology that enables computing resources to be deployed closer to end

devices, such as mobile devices and IoT devices. By deploying computing resources closer

to end devices, MEC can reduce the data transmission latency. It is particularly important

for applications that require real-time data processing or low-latency communications,

such as virtual reality, augmented reality, autonomous vehicles, etc. MEC also can support

reducing the amount of data that needs to be transmitted over the Internet, which can

help to lower the network traffic and reduce congestion. Therefore, MEC allows the model

training close to the data sources [2], that is, in devices at the access network. Figure 3.7

shows the MEC traditional architecture.

A collaborative paradigm is widely used for training machine learning models in con-

ventional MEC approaches [2]. The users send their data to the edge servers for the model

training instead of sending it directly to the cloud servers, decreasing the communication

cost. However, the paradigm still incurs high communication costs for applications that

require constant training [74]. Furthermore, data processing on edge servers still involves

transmitting potentially sensitive personal data to network edge servers [2]. The leakage

possibility may discourage users concerned about their data privacy from participating.

Data storage or usage may violate increasingly strict privacy-enforcement laws, such as

GDPR. MEC applications are increasingly adopting FL to ensure that training data re-

mains n the device of participants. FL enables complex model training collaboratively
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Figure 3.7: MEC architecture, in which servers are located in the carrier’s structure, thus
offering high throughput and low latency.

among distributed devices without data sharing [74].

3.4.2 Secure Multiparty Computation

FL is closely related to SMC. SMC is a cryptographic protocol that distributes compu-

tations among multiple parties, with neither party able to access the data of the other.

Secure multiparty computation protocols allow compatible, secure, and private distributed

computation [75]. With SMC, multiple parties can collaboratively compute a common

function without revealing their private inputs to other parties. For a secure SMC proto-

col, the parties may learn no other information but the final result. Before FL, previous

works proposed algorithms for secure multiparty decision trees for vertically partitioned

data [76, 77]. Vaidya and Clifton proposed secure association mining rules [64], secure

k-means [78], and a naive Bayes classifier [79] for vertically partitioned data. Du et al.

proposed secure protocols for linear regression and multiparty classification [66]. Wan et

al. proposed secure multiparty gradient descent methods [67].

Several SMC approaches were proposed for FL, such as homomorphic encryption [80],

pairwise masking [81], and secret sharing [82]. In Homomorphic Encryption, mathemat-

ical operations can be performed on encrypted data. Therefore, the aggregation server

cannot access the raw values of local models but can aggregate the models, generating an

unencrypted global model [80]. Although homomorphic encryption ensures privacy, the

scheme is computationally expensive. In pairwise masking, the participants agree with a

pairwise mask. The pairwise mask can be exchanged via Diffie-Helman key exchange [81].

However, the approach is insufficient to provide reasonable privacy for the participants.

In secret sharing, a secret is broken into multiple parts. Only when the parts are together

can the secret be revealed [82]. The secret can be a mask, a key, or parameters. The main
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goal of using SMC is to protect the local models against a possible honest-but-curious

aggregation server.

3.5 Discussions and Remark

Federated Learning is a research area on the rise due to the growth of available raw

data and the need to process them while assuring users’ privacy. The federated learning

technique develops a collaborative learning model where participants perform part of the

learning task locally and contribute to a global model. However, developing collaborative

learning models presents several challenges, including statistical data heterogeneity and

participant privacy. This chapter reviewed the main federated learning reference archi-

tectures and highlighted the difficulties when handling heterogeneous data and devices.

We conclude that federated learning still has challenges to reach technological maturity.

However, federated learning can potentially protect personal data privacy in environments

with sensitive data.

3.6 Research Challenges and Opportunities in Feder-
ated Learning

The FL challenges differ from other classical problems, such as distributed learning in

data centers or traditional private data analytics. The main three challenges in FL are:

1. Expensive communication: The FL environment comprises a large number of de-

vices, e.g., millions of smartphones, and network communication can be slower than

local computing due to limited resources such as bandwidth and energy [9]. Two

main aspects must be considered to reduce communication in the federated envi-

ronment: i) reduce the total number of communication rounds and ii) decrease the

size of data transmitted in each aggregation round;

2. Device heterogeneity: Storage, computing, and communication capabilities of each

device in the federated environment may differ due to variability in hardware (CPU

and memory), network connectivity (2G, 3G, 4G, 5G, and Wi-Fi), and power (bat-

tery level) [9]. Furthermore, each network size and system-related restrictions typ-

ically result in only a small fraction of devices being active at the same time [83].

It is common for an active device to fail in a given aggregation round due to con-

nectivity or power constraints [83]. Device heterogeneity intensifies challenges such
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as stragglers mitigation and fault tolerance. The FL methods must, therefore, pre-

dict participant failure, tolerate heterogeneous hardware, and be robust enough to

enable that participant failure does not affect aggregation;

3. Federated Optimization: Devices often generate and collect data in a Non-IID man-

ner in the FL environment. Smartphone users, for example, have varied language

usage in the context of a next-word prediction task. Also, the number of data

points (feature space — x) between devices can vary significantly, and there may

be an underlying statistical structure that captures the relationship between de-

vices and their associated distribution [9]. This data generation paradigm violates

the Independent and Identically Distributed (IID) data assumptions often used in

distributed optimization and can add complexity to problem modelling, theoretical

analysis, and empirical evaluation of solutions.

3.6.1 Expensive Communication

Effective communication is crucial to achieving the desired accuracy in FL. Complex deep

learning model training, such as in CNN, can comprise millions of parameters in each up-

date [84], resulting in expensive communication and potentially impacting training. The

bottleneck is aggravated by network conditions of participating devices and asymmetries

in Internet connections, where the transmitting rate is lower than the receiving rate, lead-

ing to delays [85, 86]. Therefore, works in the literature [87, 88, 20, 86, 89, 90] aim to

improve the communication of FL in three ways: i) increasing the local computation, thus

reducing the need for communication rounds; ii) performing the compression of the local

model, reducing the size of the data sent to the server; and iii) performing updates based

on importance, in which only the parameters that have relevant changes during the local

training are sent.

Liu et al. proposed the aggregation algorithm Federated Stochastic Block Coordinate

Descent (FedBCD), in which each participating device performs several local updates

before communicating for global aggregation [91]. Convergence assurance is provided

with an approximate calibration of the optimal number of local updates calculated at

each aggregation round.

While local update methods can reduce the number of communication rounds, model

compression schemes can also reduce the data transmission volume in FL. Examples

of compression schemes include “sparsing”, subsampling, and quantization, which signifi-

cantly reduce the size of the messages communicated in each aggregation round [2]. These
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methods have been extensively studied in the literature for distributed training in data

center environments, both empirically and theoretically.

Important-based updating is another way to reduce the number of bytes transmitted

in FL [2]. This technique assumes that most parameters of a deep neural network model

are sparsely distributed and their values near zero [92]. Thus, Tao et al. proposed the

edge Stochastic Gradient Descent (eSGD) algorithm, which sends only a small fraction

of important gradient to the aggregation server [90]. The eSGD algorithm tracks the

loss values in two consecutive aggregation rounds. Suppose the loss value of the current

aggregation round is less than the previous one. In that case, it implies that the current

training gradients and parameters are important for minimizing the training loss. Thus,

their respective hidden weights are assigned a positive value.

3.6.2 Device Heterogeneity

In the FL environment, there is significant variation in the device characteristics of net-

work participants, as these devices may have different hardware, network connectivity,

and battery levels. These system characteristics make issues such as delays significantly

more prevalent than in typical data center environments. To solve this problem, several

solutions have been proposed.

Typically, the participant selection in FL is random [9]. FL training progress is

limited by the training time of the slowest participating devices [19], i.e. stragglers.

Therefore, participant selection protocols are investigated to solve the training bottleneck

in FL. Kang et al. considers system overheads incurred by each device when designing

incentive mechanisms to encourage devices with high-quality data to participate in the

training process [93]. While these methods primarily focus on the variability of systems

to perform live sampling, it is advantageous to consider live sampling a set of small but

sufficiently representative devices based on the statistical data structure. From a security

perspective, the malicious participant can forge the results to receive the incentive and

be selected using their poisoned or mislabeled data.

Traditional data center configurations are based on synchronous and asynchronous

schemes. In the synchronous scheme, participants wait for each other to sync — in

the asynchronous scheme, participants run independently without synchronization [58].

Synchronous schemes are simple and guarantee a trivial equivalent serial computational

model, but they are also more susceptible to delays due to device variability. Asynchronous

schemes are approaches used to mitigate stragglers in heterogeneous environments, par-
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ticularly in shared memory systems. However, they rely on bounded delay assumptions

to control the degree of staleness. The FedAvg [10] algorithm synchronously aggregates

parameters. It is, therefore, susceptible to the lag effect as each training round progresses

at the speed of the slowest device as the server waits for all selected devices to complete

their local training before global aggregation. The training will be affected if various

participants face network problems.

Sprague et al. have empirically found that an asynchronous approach is robust for par-

ticipants joining during the aggregation round in progress, as well as when the federation

involves participating devices with heterogeneous processing capabilities [94]. Neverthe-

less, training models on Non-IID data often results in a significant slowdown in the global

model convergence. Similarly, Xie et al. proposed the FedAsync algorithm, where each

newly received local update is adaptively weighted according to its degree of obsoles-

cence, which is defined as the difference between the current aggregation round and the

aggregation round to which the received update belongs [95]. Thus, an obsolete update

from a straggler is still considered but receives less importance. Furthermore, the authors

prove the convergence guarantee for a restricted group of non-convex problems. However,

FedAsync accepts every update from honest and malicious participants. FedAsync has

no mechanism to identify a malicious participant; every participant is considered honest.

Despite the potential benefits of asynchronous FL, synchronous methods remain more

prevalent due to their relative immaturity and lack of reliability.

3.6.3 Federated Optimization

Distributed machine learning and FL are both approaches for performing machine learning

on data distributed across multiple devices. However, there is a key difference between

these two approaches. In distributed machine learning, a central server can access the

entire training dataset and subsample it into smaller subsets with similar distributions.

The central server can then forward these subsets to participating nodes for distributed

training. Some frameworks, such as Apache Spark and Apache Hadoop, are used for this

purpose. On the other hand, FL is a method where the central server cannot access the

data. In the latter, the training data remains on the devices that generated it, and only

the model parameters are shared among the devices.

Previous works on machine learning aim to model statistical heterogeneity using meta-

learning and multitasking learning methods. Meta-learning consists of machine learning

algorithms applied to metadata [96]. Multitasking learning is a transfer of learning ap-
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proach that improves generalization by using the information in the training parameters

of related tasks as an inductive bias [97]. These ideas were recently extended to the FL

environment [58].

Smith et al. proposed MOCHA, an optimization framework for FL that enables the

development of customized models for each device while utilizing a shared representation

via multitasking learning [27]. MOCHA is calibrated according to the resources of partic-

ipating devices, such as network conditions and processing load. Although multitasking

learning effectively captures internal relationships in local models to improve performance

and increase the effective sample size for each node, it has limitations in scalability to

massive networks, and it is restricted to convex problems [27].



Chapter 4

Vulnerabilities in Federated Learn-
ing

FL is susceptible to attacks against collaborative training. This chapter categorizes the

main attacks on FL as model performance and privacy attacks. The chapter discusses

FL attacks and proposed countermeasures to address these attacks. While we provide a

comprehensive overview of the current vulnerabilities in Federated Learning, it is crucial

to note that our framework addresses issues related to model performance attacks.

4.1 Model Performance Attacks

This kind of attack aims to directly or indirectly affect the performance of the global

model. Malicious participants can send incorrect or corrupted parameters to bias the

global model during global aggregation. Attacks on the model performance can be tar-

geted attacks (backdoor attacks) and untargeted attacks (byzantine attacks) [98]. The

malicious participant can backdoor subtasks by sending poisoned models. A backdoor

subtask makes the global model fail to predict a particular class, leading to mispre-

dictions [51]. The Byzantine attack goal is to cause the collapse of the global model.

Unlike backdoor attacks, byzantine attacks do not intend the misprediction on a specific

task. Consequently, when attackers try to poison the training, the aggregation server will

update the global model incorrectly, and the entire collaborative training will be compro-

mised [99]. Besides, a participant may want to get the global model but is unwilling to

contribute, sending random parameters to aggregation (free-riding). Even unintentionally,

free-riding can be harmful to collaborative training.
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4.1.1 Data Poisoning Attacks

The objective of the FL is to preserve the privacy of data stored on participants by

training machine learning models locally and transmitting only the model parameters to a

central server for aggregation. However, the server cannot guarantee that the participants

have used actual data during their training process, rendering the system vulnerable to

attacks by malicious participants [100]. By poisoning the global model, an attacker can

introduce mislabeled data, which biases the training of the global model and produces

falsified parameters [101]. Mislabeled data refers to instances in a dataset where the label

assigned to a data point is incorrect, i.e., the data is labelled with a category or class that

does not accurately reflect its true identity or characteristics. One potential method of

carrying out such an attack is to generate a series of counterfeit samples and incorporate

them into the local model update, thereby impeding or sabotaging the convergence of the

global model.

This attack only affects collaborative training if participants collude to poison the

global model. The server randomly selects the participants for aggregation; then, a mali-

cious participant has a 1
N

chance of being selected. Even if selected once or twice, a single

malicious participant cannot harm the training by poisoning its dataset [2]. The malicious

participant may collude, infect other participant machines, or use a Sybil attack [102, 19].

The Sybil attack involves a malicious participant attempting to amplify the impact of data

poisoning by generating multiple false identities of legitimate participants, all containing

poisoned data. Only two false participants can collapse the entire training [101].

Similar to the Sybil attack, Distributed Backdoor Attack (DBA) is a threat assessment

framework that exploits the distributed nature of FL to manipulate a subset of training

data by injecting adversarial triggers in a distributed manner [103]. In DBA, a global

trigger pattern is decomposed into different local patterns and embedded into the training

set of different adversarial parties. A trigger pattern can be a specific image or a sequence

of pixels that can manipulate the machine learning model’s behaviour when added to

the training data. For example, a trigger pattern in an image classification task could

be a small, specific shape or pattern (such as a red square) added to a corner of an

image. When this trigger pattern is present in the image, the model will misclassify the

image to a targeted class. DBA aims to create backdoors in the FL model that will

make arbitrarily incorrect predictions on the test set with the same trigger embedded.

Compared to standard centralized backdoors, DBA is more persistent and stealthy against

FL on diverse datasets such as finance and image data [103].
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Data poisoning attacks in FL can be executed through Generative Adversarial Net-

works (GANs) [104]. The attacker initially trains the GAN to replicate the training

samples of other participants and subsequently leverages these replicated samples to gen-

erate poisoned updates. Such a poisoning attack is characterized by increased generality

and efficacy, making it challenging to identify and mitigate [104].

Clean-label and dirty-label are the two main categories of data poisoning attacks [102].

In clean-label attacks, the adversary is assumed to be unable to modify the labels of

training data due to a certification process that verifies the correct class of the data

and requires imperceptible modifications to any data samples. Conversely, in dirty-label

attacks, the adversary can deliberately mislabel a set of data samples with a desired target

label, leading to the misclassification of future data when these samples are introduced

into the training set.

Possible Solution: Robust aggregation and differential privacy are the most com-

mon defenses against data poisoning attacks. Robust aggregation in FL refers to ag-

gregating model updates from multiple participants in a way that is resistant to various

types of attacks or noise. Robust aggregation techniques are used to aggregate the up-

dates robustly to such noise and attacks. Another solution to mitigate model poisoning

attacks involves incorporating differential privacy mechanisms. This approach entails the

introduction of noise to the model updates of each participant, thereby ensuring that

the updates do not disclose any information about the participant’s private data. The

differential privacy prevents attackers from generating poisoned updates, similar to the

GAN poisoned dataset.

Fung et al. introduced a robust aggregation method to identify and mitigate Sybil

attacks [101]. The proposed defense strategy is called FoolsGold. The authors have

discovered the differentiation of honest participants from malicious ones by analyzing their

updated gradients. In FL, the training data of each participant has a unique distribution

and is not shared. Sybil attackers share a common goal and will contribute updates that

are similar to each other, unlike honest participants. FoolsGold uses this assumption to

modify each aggregation round’s local learning rate to minimize malicious participants’

impact. The proposal is to maintain the learning rate of participants who provide unique

updates while reducing the learning rate of customers who repeatedly contribute similar

gradient updates.

Fang et al. proposed a defence strategy for detecting and mitigating poisoning datasets

in FL [105]. The proposed defence is based on identifying malicious participants by an-
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alyzing their parameter updates, which have unique characteristics compared to honest

participants. The defence strategy is designed to differentiate between malicious and hon-

est participants using Principal Component Analysis (PCA) for dimensionality reduction

and pattern visualization. After computing the gradients in a model update and compar-

ing them to the global model, only the subset of models corresponding to the participants

suspected to be the source of a poisoning attack is extracted. This subset is added to

a global list. Then, the standardized list is fed into PCA, generating a two-dimensional

data visualization. The results show that the defence can effectively identify malicious

participants, even in scenarios with a few participants, and remains robust to gradient

drift. Similarly, Tolpegin et al. propose a method for identifying malicious participants

by comparing their updates and either blacklisting them or disregarding their updates in

future aggregation rounds [106]. Finally, Sun et al. proposed to add Gaussian noise with

small standard deviations to the aggregation to mitigate the backdoor attacks [107].

4.1.2 Model Poisoning Attacks

In model poisoning attacks, the malicious participant attempts to manipulate the local

model updates before sending them to the aggregation server to poison the global model

directly [100]. The adversary aims to cause the global model to misclassify specific in-

puts with high confidence, which is achieved by manipulating the training process. The

attacker can even scale up their parameters to prevail over the averaging, increasing their

influence on the global model. Previous works [108, 109, 110, 51] have demonstrated

that model poisoning attacks are significantly more effective than data poisoning attacks.

Furthermore, these attacks can be executed with just a single attempt, making them a

serious threat to the security and integrity of the global model [108].

Bagdasaryan et al. introduced a highly effective model poisoning attack for FL [109].

By sharing their poisoned model that contains a backdoor to bias the global model to

misclassify, a malicious participant can compromise one or more participants using the

proposed constrain-and-scale backdoor. This algorithm allows attackers to create a model

with high accuracy in both the main task and the backdoor, enabling the global model

to be manipulated without modifying the local dataset of the malicious participant. For

instance, in a sentiment analysis task, a backdoor attack could bias the model to classify all

reviews containing a particular keyword as positive, regardless of their actual sentiment.

Bagdasaryan et al. showed that their approach is more effective than dataset poisoning

attacks. According to the authors, only eight participants are sufficient to compromise an
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entire FL environment with high accuracy in the malicious classification. However, the

aggregation server can detect malicious participants by comparing the received models,

as poisoned models will have large parameter values compared to other participants.

Zhou et al. proposed a deep model poisoning that can be stealthy among benign

models[110]. The proposed attack trains a mini-batch for the main task and backdoor

sub-task. In this way, the poisoned models will have similar parameters to benign ones,

making detection by model comparison complex. The authors reported that some neurons

are more important for the main task, and others are more important for the backdoor

sub-task. The authors found that calculating the second-order derivative makes it pos-

sible to find the neurons that considerably affect the loss function. Then, capturing the

second-order derivative, the Hessian matrix can measure the distance and direction of the

update [110]. Hence, the authors proposed to find the neurons important to the main

task and use a regularization term to penalize SGD, avoiding updating those neurons.

Wang et al. proposed a new class of backdoor attack called edge-case backdoor [51].

The edge-case backdoor targets underrepresented input data for misclassification. For

example, in an image classification task, the malicious participants can label samples

of people using a kilt1 as “airplane”. In an image dataset, it is relatively common to

have ordinary people, but people wearing kilts are rare. The edge-case backdoor trains

the poisoned model using Projected Gradient Descent (PGD) to reduce the detection

probability. Using PGD, the model of the malicious participant does not differ much

from the global one at every aggregation round. Finally, before sending the model to the

aggregation server, the malicious participant scales its parameter by a scalar to cancel the

contribution of the honest participants [109].

Possible Solution: The main defense for model poisoning attacks is robust aggrega-

tion [98]. There are two possible ways to achieve robust aggregation [98]. One approach

involves evaluating the performance of local models using a validation dataset and avoid-

ing those with significantly poor performance. The other approach involves comparing

local models from each participant to detect any statistical differences with the updates

made by other local workers. Typically, malicious participants have different goals than

honest participants, leading to differences in their local models. Therefore, identifying

statistically different local models can help prevent model poisoning attacks.

Andreina et al. proposed a robust aggregation called Backdoor detection via Feedback-

based FL (BAFFLE) [111]. BAFFLE introduced a validation phase in the collaborative
1Kilt is a traditional Scottish garment.
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training. In this phase, the aggregation server sends the global model to a random par-

ticipant set for validation using their local dataset. The participants in this set will vote

if the aggregation is genuine. Based on the feedback of the participants, the aggregation

server accepts or rejects the global model.

Shen et al. proposed a mechanism called AUROR for robust aggregation [112]. The

authors observed that the parameters of most honest participants have a similar distri-

bution. On the other hand, malicious participants present an anomalous distribution.

AUROR uses k-means to cluster the participants’ updates at each aggregation round

and discard outliers. Xie et al. proposed a general framework called Certifiably Robust

Federated Learning (CRFL) [113]. CRFL clips and smooths the local parameters using

parameter smoothing [114] before aggregation.

Pillutla et al. introduced a new approach called Robust Federated Aggregation (RFA)

to make FL more robust in settings where some participants may send corrupted updates

to the aggregation server [115]. RFA relies on a robust aggregation based on the geometric

median of the parameters and preserves the privacy of participating devices through secure

multi-party computation. The paper establishes RFA’s convergence for least squares

estimation of the global model. It provided experimental results with linear models and

deep networks for three tasks in computer vision and natural language processing. RFA

outperforms classical aggregation approaches in terms of robustness when the level of

malicious participants is high and competitive in low corruption regimes. Similarly, Yin

et al. presented a robust aggregation algorithm against model poisoning [116]. The focus

is on achieving optimal statistical performance, and the authors analyzed two robust

distributed gradient descent algorithms based on median and trimmed mean operations.

Their median-based aggregation algorithms also improved communication by requiring

fewer aggregation rounds for convergence.

Mhamdi et al. introduced a new approach called Bulyan, which reduces the space

for adversarial attacks and achieves convergence as if only non-Byzantine gradients had

been used to update the model [117]. Bulyan combined Krum and a variant of the

trimmed mean. Krum is a distributed algorithm for "K-reverse nearest neighbour Using

Minimization". The Krum algorithm operates by collecting model updates from a sub-

set of participants and then selecting the updates that are closest to the median using

the Euclidean distance as a metric for comparison. Specifically, Krum chooses the K

updates farthest away from the other updates and then averages them to produce the

final aggregated update. Bulyan is shown to avoid convergence to ineffectual models and
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achieves comparable performance to a non-attacked averaging scheme. However, the au-

thors acknowledge that finding the best direction for non-convex loss functions remains a

challenging problem.

4.1.3 Free-Riding Attacks

In FL, free-riding is a deceptive attack where a participant tries to exploit the benefits of

the global model without investing sufficient resources in the training process. Essentially,

a free-rider selects a smaller subset of their dataset for training or uses random noise

instead, conserving their computational resources. This behaviour results in the honest

participants having to contribute more resources to the global model training process.

Consequently, the poor quality of data the free-rider provides compromises the overall

model performance.

Possible Solution: Various solutions have been proposed to mitigate the issue of

free-riding in FL. One commonly suggested solution is to utilize blockchain technology

to track participant updates and ensure their contributions. However, this approach can

lead to potential data privacy attacks. An alternative approach is incentivizing partici-

pants to contribute by implementing reward mechanisms that benefit participants with

contributions and penalizing those who do not.

Kim et al. proposed BlockFL, a FL architecture that leverages blockchain technology

to exchange and verify local model updates, thereby addressing the problem of free-riding

in FL [118]. Each participant trains and sends the trained local model to its associ-

ated miner in the blockchain and then receives a reward proportional to the number of

samples of trained data. Then, the proposed framework avoids free-riding participants

and encourages all participants to contribute to the learning process. A similar model,

also based on blockchain, is introduced by Weng et al., aiming to provide data confiden-

tiality, computational auditability, and incentives for participants in FL [119]. However,

using blockchain technology implies implementing and maintaining miners to operate

the blockchain. Furthermore, consensus protocols used in blockchain networks, such as

Proof-of-Work (PoW), tend to cause long delays in information exchange and, thus, are

inappropriate for implementing dynamic FL models.

Another approach to avoid free-riding is using incentive mechanisms for participants

contributing to the collaborative training [120]. The incentive mechanism compensates

for the effort of a contributing participant. Richardson et al. define the influence of the

participant as the effect of its contribution on the loss function of the FL model. The
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participants receive incentives according to their influence. The total reduction in the loss

function bounds the expenses. The aggregation server has to obtain the required budget

for the rewards. Huang et al. model their incentive framework using game theory [121].

The idea is to monetize the global model and allocate the profits to each participant

according to their contributions.

4.2 Data Privacy Attacks

One of the main goals of FL is to protect the participant’s privacy in collaborative training.

However, data privacy attacks can infer the data stored on participants. Any entity

possessing local models can infer their data [50]. The aggregation server is the most likely

entity to perform such an attack. In particular, this threat is against the FL privacy

assumption because the data stored on participants may be leaked.

4.2.1 Model Inversion and Gradient Inference

Model inversion is the attack in which an adversary possessing a trained model uses its

parameters to predict the dataset used as input to train that model, thus characterizing

an attack on the privacy of a participant [50]. The attacker seeks to take advantage of

the correlation between the target, which would be the unknown features and the result

predicted by the model. This attack can be performed by the aggregation server that

has the updated local models of the participants. The model inversion harms blockchain-

based proposals because the models are stored in clear text on the chain. Every blockchain

client has a copy of the chain and can be able to perform model inversion to reveal data

stored on participants. Fredrikson et al. proposed the model inversion attack to retrieve

images from a facial recognition model [122]. The authors developed a new class of model

inversion attacks that exploits the training parameters revealed with the predictions.

Possible Solution: The main solution for model inversion is using cryptography,

differential privacy, and generating artificial data with Generative Adversarial Networks

(GAN). Triastcyn and Faltings proposed a framework called Federated Generative Privacy

(FedGP) [123]. The main idea of this approach is to train GANs on data stored on

participants to produce an artificial dataset to replace the actual participants’ dataset. As

some participants may have insufficient data to train a GAN locally, the authors proposed

a federated GAN model. Thus, user data always remains on their devices. In addition,

federated GAN generates a dataset following all data stored on participants’ distribution
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rather than a single one, which increases privacy. Figure 4.1 shows the architecture of the

framework. The authors evaluated the protection by running the model inversion attack

and showed that federated GAN reduces information leakage.

Dataset

Dataset

Noise

Sensitive data 1

Generator

Sensitive data 2

Artificial Data

Figure 4.1: FedGP architecture for two participants. Sensitive data trains a GAN, pro-
ducing an artificial private dataset. The green rectangle represents each participant’s
data, and the blue one represents the generator model. Adapted from [123].

Zhang et al. proposed a homomorphic encryption scheme to preserve the local

model parameters of FL [80]. The authors proposed Privacy-Enhanced Federated Learn-

ing (PEFL) to protect gradients from an untrusted server. PEFL enhances privacy by

encrypting the gradients of local models with Paillier homomorphic cryptosystem. The

proposal uses Distributed Selective Stochastic Gradient Descent (DSSGD) [124] algorithm

in the local update to reduce the computational costs of the cryptographic system. In

addition, encrypted gradients are used for server-side secure sum aggregation, as shown

in Figure 4.2. In this way, the untrusted server only learns the aggregated statistics of the

updates, keeping local data protected. The authors theoretically prove that the scheme

is secure. Evaluations demonstrate that PEFL has low computational costs and, at the

same time, achieves a high-accuracy global model. Zhang et al. also analyze the time to

encrypt the parameters of a fragment of the weights, using DSSGD, and conclude that it

is short, sometimes less than one second [80]. However, the authors use state-of-the-art

equipment in the evaluations, which does not correspond to the reality of the IoT and

mobile environments.

Titcombe et al. proposed a mechanism called NoPeekNN to protect the participants

against model inversion by adding noise to the intermediate data representation [125]. The
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Figure 4.2: In the PEFL Architecture, the participants send the data encrypted using ho-
momorphic encryption, and the server performs the aggregation, returning the aggregated
weights to all the participants. Adapted from [80].

authors used additive Laplacian noise to obscure the private data stored on participants.

The noise increases privacy but decreases the performance of the model. On the other

hand, Qi et al. proposed a privacy-preserving method for FL training using differential

privacy [126]. The authors used Local Differential Privacy (LDP) for the model gradients

before uploading them to the server to protect privacy. LDP is a privacy-preserving

technique that adds random noise to individual data points before releasing them or

computing aggregate statistics. This way, it can protect the privacy of individuals in a

dataset by making it difficult to link their specific data points to their identities.

4.2.2 GAN Reconstruction Attack

The GAN reconstruction attack is a class of FL privacy attacks that is even more effective

than model inversion attacks [127]. Model inversion attacks struggle to infer data stored

on participants when the deep learning structure is more complex. Hitaj et al. introduced

the GAN reconstruction attack and showed that a malicious participant could reconstruct

the data of the participants [127]. In this attack, the malicious participant creates a replica

of the global model to be the discriminator and then trains a generator to create replicas

of the data stored on participants. The malicious participant inputs data produced by

the generator into the discriminator, calculates the loss of the discriminator outputs and

then updates the generator. The malicious participant could infer the data stored in the

participants even by applying moderate differential privacy. It is essential to highlight

that the more differential privacy is used, the lower the accuracy is.

Possible Solution: Secure multiparty computation or mechanisms for malicious

participant detection are the primary defence for FL from GAN reconstruction. Chen et
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al. proposed a mechanism to protect collaborative training against GAN reconstruction

attacks using secure multiparty computation [128]. For this sake, the authors used an

improved Du-Atllah scheme, a method for multiple parties to perform calculations without

knowledge of the raw data [129]. To achieve privacy, each party adds a mask to their

data in a way that the other party mask can cancel the mask during the calculation.

The proposed mechanism needs a Trusted Third Party to generate the masks. Since

participants do not have full access to the global model during training, the aggregation

server must communicate with participants several times at each local update to assist

the local training. Thus, neither the participants nor the aggregation server can access

the data [128]. The advantage is that the data is protected against the honest-but-curious

server and the other malicious participants. The downside is the increased communication

cost and the need for a new trusted party.

Yan et al. protected the collaborative training against GAN attacks by changing the

parameter exchanging protocol [130]. In the proposal, every honest participant embeds

an additional layer in the local model called the buried point layer. During the training,

when a malicious participant sends its model for aggregation, the aggregation server can

identify it due to the absence of the buried point layer. When a malicious participant is

detected, communication with the participant is blocked.



Chapter 5

The Federated Simulated Annealing
(FedSA) Metaheuristic

The FedSA [17] is a SA variant for optimizing the federated learning hyperparameters.

The proposal optimizes the learning rate and the number of local updates. The FedSA

metaheuristic can optimize participant selection compared to the traditional random par-

ticipant selection method. Before we describe the FedSA metaheuristic, it is crucial to

understand how SA works.

5.1 Simulated Annealing

The SA metaheuristic aims to find the global minimum of a function based on principles

of statistical mechanics. SA is a metaheuristic for tackling Non-deterministic Polynomial-

time hard (NP-hard) optimization problems. An NP-hard problem is a class of problems

for which no polynomial-time algorithm (i.e., an algorithm that runs in O(nk) time for

some constant k) is known [131]. The term describes problems that are at least as hard

as the hardest problems in NP, the class of decision problems that can be verified in

polynomial time [131].

SA seeks an optimal solution s derived from an initial randomly generated solution.

At each iteration, the metaheuristics generate a random solution ς ′ in the neighbourhood

of the currently best solution. An objective function f(ς) evaluates the performance of

the candidate solution ς ′. An objective function, also known as a cost function or loss

function in optimization and machine learning contexts, is a function that the algorithm

or the metaheuristic aims to optimize. The function transforms a given input into a

single scalar output that quantitatively represents the quality, cost or loss associated
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with that input. The goal is to find the combination of input variables that maximizes

or minimizes the output value, depending on the problem. Solutions that minimize the

objective function are always accepted. Otherwise, the solution ς ′ is only accepted within

a certain probability. The probability depends on the current simulated temperature

parameter T and the degradation of ∆E of the objective function. The ∆E represents

the difference between the value of the objective function of the current solution f(ς) and

the candidate solution f(ς ′), hence

∆E = f(ς ′)− f(ς). (5.1)

Therefore, the acceptance probability function is given by

P (∆E, T ) = exp

(
−∆E

T

)
, (5.2)

where the lower the temperature value, the lower the probability that a solution worse than

the current best one is to be accepted. P (∆E, T ) assesses the probability of transitioning

from the current state ς to a worse candidate state ς ′. The acceptance probability follows

the Boltzmann distribution [132]. The parameter α, where 0 < α < 1, is a metaheuristic

constant responsible for the gradual reduction of the simulated temperature.

The SA meta heuristic has two while loops. The first loop is responsible for reducing

the Temperature. The loop, also called the outer loop, runs the second loop until the

Temperature reaches the minimum Temperature tolerable Ttol. The second one, also

called the inner loop, iterates using the same Temperature for a specific iteration number,

managed by the variable Titer.

Algorithm 2 is the pseudo-code of SA. The algorithm takes as inputs an initial

temperature Tinit, a number of iterations at each temperature level Titer, the cooling

factor α, and a temperature tolerance — or stopping temperature Ttol. The algorithm

aims to return the optimal solution ς for the given problem. In Line 2 the function INIT

generates a random solution. Usually, we use the INIT in SA to generate the first solution.

In line 3, we initialize i to 0, which counts the iterations. The first while loop at Line

4 keeps iterating while the temperature T is above the tolerance Ttol. The second while

loop in Line 5 iterates Titer times within each temperature level. In Line 7, the function

GEN_NEIGHBOR generates a neighbour solution of the best solution. The neighbour solution

can be distinct for each type of problem. In line 9, the algorithm computes the change

in the objective function ∆E. In line 8, the acceptance probability p is calculated. Lines

10 — 15 check if the change in the objective function is less than 0. Therefore, if ∆E is
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Algorithm 2: Simulated Annealing Metaheuristic.
Input: Tinit, Titer, α, Ttol

Output: ς
1 T ← Tinit

2 ς ← INIT()
3 i← 0
4 while T < Ttol do
5 while i < Titer do
6 i← i+ 1
7 ς ′ ← GEN_NEIGHBOR(ς)
8 ∆E ← f(ς ′)− f(ς)

9 p = exp(−∆E
T
)

10 if ∆E < 0 then
11 ς ← ς ′

12 end
13 else if unif(0, 1) < p then
14 ς ← ς ′

15 end
16 end
17 T ← T × α
18 i← 0

19 end
20 return ς

less than 0, the new solution is better and becomes the best solution. Otherwise, the new

solution is conditionally accepted based on a probabilistic criterion determined by the

value of p. Line 17 reduces the temperature T by multiplying it with the cooling factor α.

In Line 18, we reset i to 0 for the next temperature level. Finally, the algorithm returns

the best-found solution ς in Line 20.

A significant advantage of SA lies in its flexibility, allowing application to a diverse

array of optimization problems, encompassing both combinatorial and continuous do-

mains [133]. SA is relatively straightforward to implement and does not require a deep

understanding of the problem domain [134]. On the other hand, SA can be slow, particu-

larly for complex problems with large search spaces or expensive objective functions [134].

5.2 FedSA Architecture

The federated-learning hyperparameters’ optimization scenario differs from the traditional

NP-hard problems solved with SA. In traditional NP-hard problems, e.g., the travelling

salesman problem, the loss of a given solution ς is the same regardless of the algorithm
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epoch. Unlikely, in the federated learning scenario, the solution ς loss in iteration i may

differ from the same solution loss in iteration i + 1. In the travelling salesman problem,

you are given a list of cities and the distances between each pair of cities. The problem

is to find the shortest possible route that visits each city exactly once and returns to

the original city. The objective function, the total distance travelled, is fixed: if you re-

evaluate the same route at different times (epochs), the distance will remain the same. On

the other hand, in the FL hyperparameter optimization scenario, the objective function

(also called loss function) can change over time as the global model evolves. Here, the

objective function is likely related to the global model’s performance, specifically the loss,

which can be influenced by the hyperparameters used in each participant local update.

Due to the dynamic aggregation of models and the evolving nature of the data across

nodes, a set of hyperparameters that produced a global model with low loss in one epoch

may not necessarily produce an equally good model in the next epoch. The performance

is epoch-dependent and fluctuates as the training progresses. In other words, the training

process is stochastic since the same solution returns distinct losses. Hence, the best

solution cannot stand for the entire training process. Therefore, we propose a variation

of the SA for federated-learning scenarios, which we call FedSA.

The FedSA optimizes the learning rate and the number of local updates. The learning

rate stands for the model convergence speed —– a low learning rate delays convergence or

traps the model in a local minimum. At a local minimum, the disturbance in candidate

solutions is insufficient to generate a change that causes the algorithm to reach another

local minimum value. However, a high learning rate may increase learning speed, but it

also may lead to fluctuations around the global minimum without refining the solution

to the global minimum. The main goal of FedSA is to find an optimal value at each

aggregation round. The proposal also uses a neighbourhood structure to find the best

value adaptively. Figure 5.1 contrasts a static learning rate with the dynamic learning

rate adjustments enabled by FedSA.

Besides defining the learning rate, the proposal also defines the number of local up-

dates. The number of local updates indicates how many iterations the participants’ local

models perform on their local datasets before a global aggregation round. In this case,

the main goal of FedSA is to define when to increase or decrease the local computation

among the selected participants, and FedSA deploys the neighbour structure to decide

when to increase or decrease the local computation. A high number of local updates can

lead to overfitting, as models may become specialized to their local datasets, reducing

their generalizability. On the other hand, a low number of local updates may result in
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(a) Convergence behaviour with a small learn-
ing rate. Note the slow progression towards the
global minima, illustrating the trade-off of sta-
bility for speed.

(b) Convergence behaviour with a large learn-
ing rate. The plot reveals a fluctuation over the
global minima, indicating an instability in the
learning process.

(c) Convergence behaviour of the dynamic learn-
ing rate adjustment using FedSA. The learning
rate adapts at each aggregation round, balancing
speed and stability.

Figure 5.1: Compared to the static learning rates, the dynamic learning rate adjustment
in FedSA offers an adaptive solution for optimizing convergence.

underfitting and insufficient learning, failing to capture the underlying distribution of the

data. Therefore, utilizing FedSA for dynamic local updates mitigates these problems and

optimizes computational efficiency at the participant level in Federated Learning.

We also define a neighbourhood structure, enabling FedSA to perform a non-random

participant selection at each aggregation round. Using FedSA is not the best solution for

participant selection, but it is a better solution than random selection. The neighbourhood

structure is based on the ID of the participants and the global loss function. Employ-

ing participant selection over random selection in FL ensures that the most informative

and relevant local updates are aggregated, enhancing performance. The non-random ap-

proach also increases computational efficiency by focusing on participants who contribute

meaningfully to training rather than randomly including potentially noisy or irrelevant

data.
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5.3 Simulated Annealing for Federated Learning

The proposed FedSA metaheuristic aims to find the best combination of participant selec-

tion, learning rate, and local updates for each aggregation round, as shown in Algorithm 3.

Therefore, the FedSA expects as input the set of participants IDs (µ), the learning rate

values limits (η), and the number of local updates limits (maximum and minimum values),

given by the tuple τ .

Algorithm 3: Federated Simulated Annealing Metaheuristic.
Input: η, τ , µ, Tinit, epochs, α
Output: best_solution

1 T ← Tinit

2 best_solution← INIT(η, τ, µ)
3 best_loss←AGGREGATE(best_solution)
4 for i < epochs do
5 current_solution← GEN_NEIGHBOR_SOLUTION(best_solution)
6 current_loss←AGGREGATE(current_solution)
7 ∆E ← current_loss − best_loss

8 p = exp(−∆E
T
)

9 if best_loss < current_loss then
10 best_solution← current_solution
11 best_loss← current_loss

12 end
13 else if unif(0, 1) < p then
14 best_solution← current_solution
15 best_loss← current_loss
16 T ← COOL(T, α)

17 end
18 best_loss_test← AGGREGATE(best_solution)
19 if best_loss_test < best_loss then
20 best_solution← INIT(η, τ, µ)
21 end
22 end
23 return best_solution

The η tuple comprises the interval between the smallest and the highest value that

the learning rate may assume during training. The τ tuple comprises the interval of pos-

sible values for the number of local updates. The µ contains a list with the IDs of all

participants. Every participant associates with an index, a unique identifier, and indi-

cates the sequence that participants joined the federation if FedSA is used for participant

selection. FedSA bootstrapping is to perform the parameter selection at random, i.e.,

the participants’ subset selection, the learning rate, and local updates are random. The
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subsequent selections are neighbouring solutions to the best solution generated in each

aggregation round. Other parameters of the algorithm are the initial temperature (Tinit),

the maximum number of epochs (epochs), and a cooling value (α).

We model a solution ς as a tuple containing the number of local updates, the learning

rate, and selected participant indexes (IDs). We add a new stage at the end of each

iteration of the conventional SA, a new aggregation round, to assess the best solution.

Evaluating the best solution allows adding randomness if the best solution degrades,

avoiding local minima.

Traditionally, there is an inner loop that is responsible for temperature reduction.

For FedSA, we replace the inner loop with a new temperature reduction method. In

our proposed variant, the temperature is only reduced when a worse solution is selected.

Therefore, the probability P (∆E, T ) decreases whenever a worse solution is accepted.

The idea is enabling a trade-off between diversity and greed. Hence, the algorithm tends

to be greedy only when it accepts generalist solutions. By reducing the temperature

only when a worse solution is accepted, we provide a trade-off between exploration and

exploitation. This enables the algorithm to be greedy precisely when generalist solutions

emerge, thereby accelerating convergence without sacrificing solution quality.

The function INIT generates a random candidate solution following a uniform dis-

tribution. The probability density function is 1
b−a

, where a and b are lower and higher

threshold values, respectively. Those thresholds can be passed to FedSA as a hyperparam-

eter. The function AGGREGATE represents a global aggregation round and returns the loss

of the global model. The function GEN_NEIGHBOR_SOLUTION generates a neighbour solu-

tion of the current best solution known. The generation of the best solution’s neighbour

depends on the variable type. The number of local updates is an integer value. Hence,

our function selects a subsequent value of the current value as a neighbour.

Figure 5.2 (1) and (2) are a graphical representation of the neighbour selection struc-

ture. Each square is an integer value that represents a number of local updates. The blue

square represents the so-far best value. The scenario in Figure 5.2 (1) represents a normal

situation where the metaheuristic selects neighbour value to the current best value. The

subsequent value may be in a positive direction, simply by adding +1 to the current value,

or in a negative direction, reducing −1 to the current value. The second scenario is when

the current best value is the first or last in the list, i.e., a hyperparameter’s maximum

or minimum value. In this case, the direction of the current iteration would cause the

neighbouring solution to extrapolate the border. Then, under this condition, the search
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Figure 5.2: Neighbor structure for integer values. The thick orange arrow represents
the positive direction, and the salmon represents the negative direction. The thin green
arrows are acceptable permutations, and the red ones are forbidden.

direction is flipped.

The participant set selection follows a similar structure. Each participant has an

integer number as an ID, and selecting a neighbour means incrementing or decrementing

the current ID as shown in Figures 5.2 (1) and (2). Nevertheless, as we are selecting a

new set of participants, our proposed method could cause a participant to be selected

more than once. In this case, the function performs one of two actions presented in

Figures 5.2 (3): the first is to flip the direction and the second is randomly choosing

another not yet selected participant. The function will first choose to flip the direction,

but if the participant ID of the flipped direction has already been selected, it randomly

selects another participant.

The learning rate is a float value, requiring a different method to calculate a neighbour

value. Hence, we use

η ← ηβ ± ϵ× unif (ηa, ηb) , (5.3)

where, η is a hyperparameter represented as a floating-point number, ηβ is the best value

so far, ηa and ηb are the smallest and largest values that the hyperparameter assumes.

Then, a value is generated following a continuous uniform distribution between the limits

values of the hyperparameter. The value is multiplied by a constant ϵ, where 0 < ϵ < 1.

The constant ϵ is the step for the neighbouring value: the larger the constant, the greater

the step. The product of the uniform distribution and ϵ is added or subtracted, depending

on the iteration direction. The direction determines whether the term ϵ × unif (ηa, ηb)

should be added to or subtracted from ηβ.

After running the neighbourhood calculation, we set the candidate solution as a set

composed of i) The selected participants subset St; ii) the learning rate η; and iii) the
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number of local updates τ . Then, we calculate the loss function for the new candidate so-

lution (line 6) and evaluate whether the new solution should replace the previous solution

(lines 7-17).

At the end of every FedSA iteration, an aggregation round is performed (line 18).

The new aggregation validates the best solution known. When the known solution is no

longer the best, a completely random solution is generated with the function INIT (line

20) to prevent the algorithm from being stuck in a single region. The best solution may

no longer be the best, e.g., the best learning rate may change with some iteration, or a

participant’s dataset may no longer reduce loss. Thus, the FedSA constantly evaluates

the best solution to avoid getting stuck with a solution that is no longer the best. The

landscape of optimal solutions in FL is not static but changes dynamically over time.

Factors like data distribution shifts among participants can affect what constitutes an

“optimal” hyperparameter setting. Therefore, by re-evaluating the best-known solution

at the end of each FedSA iteration, our algorithm ensures adaptability and resilience to

these dynamic shifts, preventing stagnation and continuously optimizing performance.

5.4 FedSA: Evaluation and Results

We compare the FedSA with FedAvg as the baseline to evaluate our proposal. The primary

purpose of the evaluation is to assert the convergence time reduction of FedSA upon the

baseline proposal, FedAvg. At this point, we used FedSA to select the participants.

It is pertinent to highlight that the evaluation and results discussed in this section

are based on our earlier work, referenced in [16], carried out before we developed our

participant selection method. The assessment of the complete framework can be found

in Section 6.3. Additionally, it should be noted that in the evaluations presented in Sec-

tion 6.3, we were able to refine our approach to simulating non-IID data, which augmented

the complexity of the global model, subsequently impacting performance.

We develop a Python-based simulator that generates the participants’ processes and

shares the dataset among all participants. The simulator gets a dataset and splits it into

training and evaluation sets. It is essential to notice that the training and validation

have the same proportion of normal and attack samples. The training set contains 70%

of the dataset, while the evaluation set contains 30% of the samples. The experiments

run with a confidence interval of 95% to ensure statistical relevance. Following a normal

distribution, the simulator randomly splits the training set in shards to the n participants.
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Since the shards are composed of random samples selected from the training set, it is not

guaranteed to contain attack samples. The shards are the same size and represent the par-

ticipants local datasets. Each participant trains its local model using their local datasets

without sharing data. Thus, each participant is unawarded by the other participants’

data. At each aggregation round, the selected participants send their models’ parameters

for aggregation, Equation 3.1, generating the global model wt
G. The aggregation server

uses the validation set to calculate the global loss. The simulations run in a computer

equipped with an Intel (R) Xeon Phi (TM) CPU 7250 @ 1.40GHz processor and 128GB

of RAM.

We employ TensorFlow1 to build the machine learning models. The simulator im-

plements FedAvg and the FedSA proposal. Our machine learning model is a Multilayer

Perceptron (MLP), deploying two hidden layers. The first hidden layer contains 50 neu-

rons, and the second has 100 neurons. We apply Rectified Linear Units (ReLU) as the

activation function in hidden layers and Softmax in the output layer. We empirically

choose the neural network configuration, performing fine-tuning with the entire dataset

in a centralized machine learning evaluation.

We evaluate the proposals using the CICDDoS2019 and CICIDS2017 dataset [135]

to generate traffic on each local network. CICDDoS2019 and CICIDS2017 datasets are

from the Canadian Institute for Cybersecurity (CIC) and present normal and attack

flows. The CICDDoS2019 dataset has normal flows and the most up-to-date common

Distributed Denial of Service (DDoS) attacks, which resemble the actual real-world data.

The testbed used in the CICDDoS2019 had one web server, one firewall, and four hosts.

The DDoS attacks arrive from an external network. The dataset captures two-day traffic

and has twelve DDoS attacks, including Network Time Protocol (NTP), Domain Name

System (DNS), Lightweight Directory Access Protocol (LDAP), Microsoft Structured

Query Language (MSSQL), NetBIOS, Simple Network Management Protocol (SNMP),

Simple Service Discovery Protocol (SSDP), User Datagram Protocol (UDP), UDP-Lag,

WebDDoS, SYN, and Trivial File Transfer Protocol (TFTP). The CICIDS2017 is a

dataset containing a variety of common network attacks. The CICIDS2017 testbed con-

sists of a firewall and twelve hosts, and the attackers are located in a separate network.

The CICIDS2017 dataset has five days of captured traffic and eight network attacks, in-

cluding Brute Force FTP, Brute Force SSH, DoS, Heartbleed, Web Attack, Infiltration,

Botnet, and DDoS. The CICIDS2017 dataset is unbalanced, containing around 80% of
1Available at https://www.tensorflow.org/library. Accessed on 31/12/2021.

https://www.tensorflow.org/library
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normal flows and 20% of attack flows. Besides, we apply CICFlowMeter2 to transform

network packets into bidirectional network flows. The CICFlowMeter tool generates 80

different features, such as flow duration, number of packets, number of bytes, and aver-

age packet size. We discard source and destination IP addresses, source and destination

ports, and transport protocol to avoid overfitting. Both CICDDoS2019 and CICIDS2017

are unbalanced datasets, containing around 80% of normal flows and 20% of attack flows.

5.4.1 Simulation Scenario

We evaluate the accuracy, precision, sensibility, specificity, and loss function to measure

the performance of FedSA and FedAvg. We use a scenario with 100 participant IDSes, and

only 30% of the participants are selected at each aggregation round. It is important to

note that the proportion of selected participants affects the learning. Besides evaluating

the metrics above, we measure whether the proportion of selected participants affects the

classification performance.

We simulate two scenarios varying the proportion of selected participants to evaluate

the impact on training. The main goal is to evaluate the impact of the chosen participants’

ratio on the global model’s performance and convergence. It is important to note that

aggregating the parameter of all participants is not scalable since the growth in the number

of participants may negatively impact the server processing capacity. In the first scenario,

we consider a federation consisting of 100 participants, where 50 of them are selected for

training (St), comprising 50% of the entire participant pool. In the second scenario,

we increase the total number of participants to 150, selecting 40 for training, thereby

altering the proportion of St from 50% to ≈ 27%. By varying the number of selected

participants, our objective is to evaluate the impact of the participant selection ratio

on the convergence of the proposed methods. This approach allows us to assess the

performance of our proposal with both large and small subsets of selected participants.

FedAvg selects the same number of participants as FedSA, albeit at random. FedAvg

employ a learning rate of η = 0.1 with a decay at each iteration of γ = 0.1
i

, in which i is

the number of the iteration. There is no established method for determining the optimal

learning rate value; it is typically obtained through a fine-tuning process or empirical

selection. On the other hand, previous proposals aim to improve the convergence of the

neural network using adaptive learning rates [136, 137, 138, 139]. At each iteration, the

learning rate updates to:
2Available at https://www.unb.ca/cic/research/applications.html. Accessed on 31/12/2021.

https://www.unb.ca/cic/research/applications.html
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ηt ← ηt−1 × 1

1 + γi
. (5.4)

For the FedAvg evaluation, the learning rate dynamically decrements during the com-

munication rounds according to the decay. In FedSA, the learning rate adaptively changes

during the training, which means that the learning rate value depends on the previous

learning rate value. The local update is the only hyperparameter that remains static for

FedAvg. Then, we evaluate scenarios with different local update numbers.

Another crucial point is to evaluate whether the FedSA parameters impact the train-

ing. We evaluate the FedSA with different combinations of T and α to evaluate the

performance impacts of the FedSA hyperparameters. We also compare federated learning

against centralized learning strategies to evaluate the overhead added by the federation

procedure.

5.4.2 CICIDS2017 Evaluations

First, we evaluate the impact of the local updates over the aggregation rounds of FedAvg

compared against the FedSA proposal. We perform ten aggregation rounds because nei-

ther FedSA nor FedAvg improves performance after the tenth round. FedSA chose the

number of local updates at each aggregation round in the interval of 1 to 20 local updates.

Figure 5.3 shows that the proposal reaches 96% of accuracy in 2 rounds, while, to achieve

the same accuracy, FedAvg takes eight aggregation rounds with ten local updates. The

randomness of FedAvg while choosing the participants’ subset for training may lead to the

selection of participants that do not contribute to the model. Besides, the gradual reduc-

tion of the learning rate delays the convergence of the global model [140]. The adaptive

number of the local updates is essential to the global models’ convergence since the need

for local updates may diverge for each dataset and sometimes for each aggregation round.

We also observe, Figure 5.3(b), that global loss significantly reduces in the first two itera-

tions using FedSA, followed by minor changes in the subsequent rounds. Then, we assume

that three aggregation rounds are a fair trade-off between classification performance and

processing for a real-world environment.

Figure 5.4 shows the proposal and the baseline in two different scenarios. The first

scenario is a federation with 100 participants, and at each aggregation round, the server

selects 50% for the training process. The second scenario is a federation with 150 partic-

ipants, but just 27% join the training process. The main focus of the test is to certify if
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Figure 5.3: Accuracy and loss regarding the validation dataset. We can observe that
FedAvg achieved 95,5% accuracy in the 6th aggregation round (τ = 10), the same result
as FedSA achieved in 2nd aggregation rounds. FedSA converged in the 5th aggregation
while FedAvg in the 8th. The acceleration in the convergence is related to the FedSA
selection of the hyperparameters and participants.
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(b) Loss function evolution over the aggrega-
tion rounds.

Figure 5.4: The global model performance for different participants’ selection proportions.
Comparison of two scenarios: 150 participants and 40 selected at each aggregation round
(27% selection scenario); 100 participants and 50 selected at each aggregation round (50%
selection scenario). We can observe that both scenarios in FedAvg converged in the 8th

aggregation round, achieving the same result by the end. For FedSA, both scenarios
converged in the 5th aggregation round, whereas the 50% selection scenario was slightly
better.

selecting a different proportion of participants affects the convergence of the model. For

the sake of fairness, FedAvg applies the number of local updates that were best performed

in previous evaluations. Figure 5.3 shows that ten local updates work better than two,

five, and twenty local updates for FedAvg using the CICIDS2017 dataset. Selecting fewer
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Figure 5.5: The global model metrics for FedSA and FedAvg in the scenario of 50% and ≈
27% of participants’ subset selection. We can observe that FedSA had 4% more precision
in the scenario selecting more participants. However, we can also mark that even in the
27% selection scenario, FedSA has better performance than FedAvg in the 50% selection
scenario.

participants does not affect the convergence, as shown in Figure 5.4. It is important to

note that the FedSA achieves 96% accuracy even when selecting a small proportion of

participants in just three aggregation rounds. In comparison, FedAvg needs eight aggre-

gation rounds. In addition, Figure 5.4(a) shows that the scenario with more participants

(50%) obtains a slightly better accuracy than the scenario in which 27% of participants

are selected to train the global model. We hypothesize that selecting fewer participants

does not burden the classification performance, but it is still crucial to consider other

metrics, such as precision, sensibility, and specificity.

The validation dataset, similar to the participant’s local dataset, is also unbalanced.

Precision evaluates how many attack samples the model predicted correctly. Sensitivity, or

Recall, measures the proportion of actual attack cases predicted as an attack by the model.

On the other hand, specificity measures the proportion of actual normal traffic predicted

as normal traffic by the model. Figure 5.5 shows the precision, sensibility, and specificity

for FedSA and FedAvg in two scenarios. The first scenario, shown in Figure 5.5(a), has

100 participants, and 50 participants are selected at each aggregation round to train the

global model. FedSA presents better precision and specificity, but worst sensibility, i.e.,

the FedAvg detected more attack samples in the validation dataset than FedSA. However,

FedSA had better precision, i.e., our proposal presents fewer false-positive samples than

FedAvg. False-positive is a significant problem for the IDS scenario since classifying a

normal flow as an attack flow will cause undesirable false alarms.

The evaluations show that selecting fewer participants for the training does not com-
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Figure 5.6: For centralized machine learning (non-federated learning), one aggregation
round equals ten epochs. As expected, centralized learning is slightly better than the
federated learning approach. The loss of centralized learning is considerably better than
the federated learning losses. This low loss is due to the access to the entire dataset.

promise the convergence but reduces the model’s efficiency. The global model achieves

reasonable specificity in both scenarios, showing that the proposed algorithm correctly

detects normal flows.

Another essential evaluation is a comparison of federated learning and centralized

machine learning. We measure the accuracy and loss function of centralized machine

learning, FedSA, and FedAvg for the evaluation. Centralized machine learning performs

better because the model training accesses the entire dataset. A centralized machine

learning approach implies that all the participants’ data is centralized in a single dataset

for training a single machine learning model. Besides, while training a collaborative

model, the data sharing may add some noise to the training. Each aggregation round is

equivalent to ten iterations of centralized machine learning. We used ten iterations per

aggregation round because we use ten local updates for FedAvg.

Figure 5.6 shows that the federated learning global models achieve an accuracy value

close to one from the centralized machine learning model. Although centralized machine

learning performs better than federated learning, the centralized approach relies on col-

lecting all samples from the participants’ dataset, harming participant privacy. FedSA

converges faster than FedAvg, requiring just two aggregation rounds.

The FedSA metaheuristic has two hyperparameters, cooling (α) and temperature (T ).

The temperature determines the acceptance probability of a solution worse than the best.
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High temperatures lead to the acceptance of random solutions, and low temperatures

lead to greedy behaviour, refining an already good and accepted solution. The cooling

hyperparameter is responsible for decreasing the temperature periodically. Hence, we used

a high temperature 0.8 and a low cooling 0.05 in our evaluations. The following evaluation

aims to assess the impact of the FedSA hyperparameters on the global model accuracy.

This evaluation intends to show that the FedSA hyperparameters do not drastically change

the global models’ accuracy. We perform the FedSA hyperparameters evaluations using

ten aggregation rounds.

Table 5.1: Evaluating FedSA with different cooling and initial temperature. We evaluated
the global models’ accuracy several times for each hyperparameter combination in a five
aggregation rounds scenario and calculated the mean (µ) and standard deviation (σ).

T = 0.1 T = 0.4 T = 1

cooling = 0.05 µ = 96.84
σ = 0.08

µ = 96.74
σ = 0.02

µ = 96.66
σ = 0.01

cooling = 0.4 µ = 96.71
σ = 0.04

µ = 96.74
σ = 0.09

µ = 96.67
σ = 0.07

cooling = 0.9 µ = 96.80
σ = 0.05

µ = 96.61
σ = 0.10

µ = 96.56
σ = 0.06

Table 5.1 reveals combinations of FedSA hyperparameters. We perform tests for each

combination several times for five aggregation rounds. Then, we calculated the mean (µ)

and the standard deviation (σ) of each combination. We deploy only five aggregation

rounds because, in the previous evaluation, the FedSA global model, at the fifth round,

achieved a similar result to the last aggregation round. Thus, we assume the global model

convergence at the fifth aggregation round.

Based on the results of Table 5.1, we show that the selection of FedSA input hy-

perparameters does not interfere the final results. Table 5.1 shows that even drastically

changing the FedSA’s hyperparameters, the model achieved more than 96% accuracy in

5 aggregation rounds. Therefore, FedSA hyperparameters require no fine-tuning process.

Nonetheless, traditional Federated Learning hyperparameters, such as learning rate and

local update number, drastically change the global model accuracy, requiring a fine-tuning

process.

5.4.3 CICDDoS2019 Evaluations

For CICDDoS2019, we evaluate the impact of local update numbers over the aggregation

rounds. We modify the local update number of FedAvg and compare it with the FedSA
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Figure 5.7: Accuracy and loss function regarding the validation set. Using the CICD-
DoS2019, FedSA was slightly better than FedAvg. We can observe that FedSA is faster
than FedAvg as it converges with fewer aggregation rounds.

proposal. Figure 5.7 shows the FedAvg with 5, 10, and 15 local updates, and FedSA

adaptive varying between 1 and 15 local updates. It is possible to notice that the pro-

posal converges in 5 aggregation rounds, while FedAvg’s achieved the same result in 15

aggregation rounds, using 15 local updates. FedAvg scenarios for 5 or 10 local updates

converge after 23 aggregation rounds. We can observe that FedSA and FedAvg achieved

99% accuracy in the first couple of aggregation rounds using the CICDDoS2019 dataset.

Probably, there is some feature in the dataset that can define the sample class, i.e., has

high information gain for the objective classes.

Figure 5.8(a) shows the accuracy of FedAvg in three different scenarios. The first

scenario uses 10 aggregation rounds, the second 20, and the third 30. In each scenario,

we vary the number of local updates from 1 to 15. This step is a manual fine-tuning

of FedAvg hyperparameters. This analysis assesses whether FedSA’s choices about the

number of local updates impact the accuracy of the solution when compared to using

FedAvg. Thus, Figure 5.8(b) presents a bar graph with the proposal’s accuracy in the

same three evaluation scenarios presented in Figure 5.8(a). The proposal obtained better

results than the FedAvg algorithm without performing several fine-tuning tests to identify

the best set of hyperparameters.

Figure 5.9 shows the proposal’s precision, sensitivity, and specificity bar in the scenario

with only ten aggregation rounds for FedSA and FedAvg. We use ten aggregation rounds

because it is necessary for the proposal to converge. For a fair comparison with the

FedSA, we chose the best number of local updates evaluated in the FedAvg’s fine-tuning
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Figure 5.8: The global model accuracy with different values of local updates τ , considering
scenarios with 10, 20 or 30 global aggregations.
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Figure 5.9: Accuracy, Sensitivity, and Specificity of the global model in the scenario of 10
global aggregations using FedSA and FedAvg.

test, described in Figure5.8(a). The FedSA proposal achieved better accuracy, i.e., the

amount of correctly classified attacks. Likewise, the proposal achieved a slightly better

specificity than FedAvg, i.e., the rate of attacks classified correctly.

5.4.4 FedSA Final Remark

We conclude that using FedSA, we get the model to converge ≈ 50% faster than the

conventional. We conducted the evaluations five times and calculated the mean and

confidence interval of the evaluations. Using the CICDDoS2019 dataset, FedAvg and

FedSA achieved 99% accuracy in a few aggregation rounds. We could not demonstrate
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that FedSA was faster than FedAvg with the CICDDoS2019 dataset. However, we were

able to show that federated learning worked very well for the federated IDS scenario. The

CICDDoS2019 dataset is quite massive and takes time to evaluate.



Chapter 6

The Federated Score-Based Selec-
tion Method

Federated optimization, discussed in Section 3.6.3, is a critical issue in FL. The federated

optimization occurs because the data samples collected from the participants in federated

learning are statistically different. This statistical difference can make the global model

biased towards specific devices or regions. Furthermore, participants could behave ma-

liciously and intentionally attempt to decrease the performance of the global model, as

discussed in Chapter 4. Malicious participants can send incorrect or corrupted parameters

to bias the global model during global aggregation.

There are two primary approaches in federated optimization: participant selection [32,

31, 33] and novel aggregation algorithms [16, 141, 142, 21, 143, 144, 145]. Participant

selection aims to ensure that the selected devices have data representative of the global

population, contributing to the global model performance. Conversely, novel aggregation

algorithms have been proposed to enhance the aggregation of the global model, thus

mitigating federated optimization. These algorithms aim to improve the performance

of federated learning by effectively aggregating the locally trained models from multiple

devices.

This chapter presents a method to address the federated optimization in federated

learning, which involves a two-fold solution: participant selection and an aggregation

algorithm leveraging global momentum. Our proposed solution enables more efficient

model aggregation by selectively choosing participants based on their contribution and

reliability and leveraging global momentum to improve the convergence and stability of the

federated optimization process. We develop a participant selection using epsilon greedy to

select the participants using a score we created and a mechanism to avoid over-selecting



6.1 Aggregation with Global Momentum 66

participants. We propose an Information Gain (IG) variant to score each participant.

Our IG variant considers both local and global losses. This way, our score measures the

participant contribution individually in the group of selected participants. We intend to

give a penalty to participants with low local loss and high global loss and give a reward

to the contrary. Our participant selection method has a participant blocker mechanism

to promote a more balanced distribution of participant selection and avoid over-selection.

This mechanism keeps track of the times each participant is selected and determines the

probability of blocking a participant from further selection. As a result, participants

selected multiple times are increasingly likely to be blocked from further selection.

We propose the incorporation of global momentum in the global aggregation to en-

hance the optimization process. Global momentum enables stable model performance

during training by minimizing the gap between the local and global objective functions.

After computing the global momentum at each aggregation round, the aggregation server

broadcasts the global momentum back to the participants. Thus, the participants can

utilize it as local momentum. This approach allows local participants to take advan-

tage of the global perspective while optimizing their models. Our implementation of

global momentum is inspired by the FedAGM [21] approach and has been adapted to

suit our optimization method. Overall, using global momentum can significantly improve

the performance of the global model by promoting stability and reducing performance

discrepancies between local and global objectives [21]

6.1 Aggregation with Global Momentum

We describe how the aggregation algorithm utilizes global momentum to prevent perfor-

mance instabilities during training, thereby reducing the gap between the local and global

loss functions [21].

Momentum is a well-known optimization technique in machine learning that accel-

erates convergence towards the minimum of a loss function. Instead of relying on the

gradient of the current step to update model parameters, momentum also considers past

gradients. The momentum technique also helps overcome local minima or saddle points,

thus facilitating better model generalisation. Figure 6.1 illustrates the model parameters

optimization trajectory for two scenarios: one without momentum (depicted in red) and

one employing momentum (depicted in blue).

We propose the incorporation of global momentum in the global aggregation to en-
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Aggregation without momentum

Figure 6.1: Comparative analysis of training a model with and without Momentum. The
inclusion of momentum not only accelerates convergence towards the minimum but also
aids in overcoming local minima, leading to more efficient and effective training.

hance the optimization process. Unlike traditional momentum, which is computed locally

at each participant, Global Momentum is calculated on the server side during the ag-

gregation phase. This centralized momentum term encapsulates global trends across all

participating nodes and is then disseminated back to the individual participants for the

subsequent training iteration. By doing so, Global Momentum enables a more harmo-

nized and efficient convergence across the network, making the collective learning process

more effective and robust. Global momentum enables stable model performance during

training by minimizing the gap between the local and global loss functions.

After computing the global momentum at each aggregation round, the aggregation

server broadcasts the global momentum back to the participants. Then, the participants

can utilize it as local momentum. This approach allows local participants to take ad-

vantage of the global perspective while optimizing their models. Overall, using global

momentum can significantly improve the performance of the global model by promoting

stability and reducing performance discrepancies between local and global objectives [21].

In this section, we explain how the aggregation algorithm uses global momentum. Using

global momentum helps prevent performance instabilities during training [21].

The server initializes a global model and sends it to all the participants in the fed-

eration. Let wt
G denote the global model at aggregation round t, and the global model

accelerated by the momentum by wt
a = −

(
wt+1

G −wt
G

)
. Then, wt

a is the global gra-

dient information of the current global aggregation. Each selected participant updates

their local model using its local data. The local model of participant i is denoted by

wi. Therefore, it applies a regularization term to the local loss function to reduce the

bias and variance of local updates [21]. The regularization term at participant i is de-

noted by ri(wi) = λ(wi − wt
a), where λ is a hyperparameter that controls the strength
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of regularization. A larger λ means more regularization, which can improve the stability

and consistency of local updates. A smaller λ means less regularization, allowing more

flexibility for local updates. Therefore, the local loss function is defined by

argmin
wi

Li (wi) = ωfi (wi) + ri(wi) (6.1)

where fi (wi) is the objective function, such as cross-entropy or mean squared error. The

coefficient ω determines the relative significance of the objective function.

The server collects the local gradients from the selected participants and computes

a global gradient by averaging them. The server updates the global model using a

momentum-based method incorporating past global gradients. The global update is given

by wt+1
G = 1

|St|
∑

k∈St w
t+1
i , where wt+1

i = wt
G − τ(wt

G + ri(wi)). The coefficient τ is the

learning rate, and St is the selected participant subset at aggregation round t.

The main idea of global momentum is to use the global gradient as an acceleration

term that helps the participants converge faster and more stably. This method does not

require additional communication costs or storage of past models. The evaluations of

FedSBS with global momentum are reported in Section 6.3.

6.2 Participant Scoring Method

Our participant scoring method takes inspiration from the IG equation. IG quantifies the

extent of information a subset contributes towards making accurate class predictions [146].

The primary use of IG is for feature selection and decision tree creation. We define the

IG as:

IG = Entropy(P)−
N∑
t=1

φEntropy(St), (6.2)

where N is the number of subsets and φ weights the entropy of the subset St. Typically,

φ is quantified as the ratio of the number of samples in the subset St to the total number

of samples in the complete dataset P, ∀ St ∈ P. This relationship can be formalized as

φ = |St|
|N | . Therefore, the IG measures the reduction in entropy of a given subset, i.e., the

uncertainty associated with a subset of randomly selected samples [147]. We define the

entropy as:
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Entropy = −
∑
i

pi log2 pi (6.3)

where pi denotes the probability of the ith outcome in the dataset or probability distribu-

tion under consideration. It serves as a measure of how frequent or likely this particular

outcome is concerning all other possible outcomes.

In traditional applications of IG, such as decision tree construction, the selected set of

feature St is not necessarily identical to the set feature St+1. However, in the participant

selection scenario, the intersection St ∩ St+1 can occur, allowing for the possibility of a

participant being consecutively selected across multiple aggregation rounds.

The main goal of the participant selection scenario for class prediction is to reduce

cross-entropy. Cross-entropy is a measure used to evaluate the dissimilarity between two

probability distributions, typically the true distribution and the estimated distribution.

In machine learning, particularly in classification problems, cross-entropy is commonly

employed as a loss function of the model, denoted by L(w). The goal is to minimize this

loss function, driving the estimated probability distribution of the model closer to the

true distribution.

Consequently, we can reformulate the IG as:

IG′ = L(wt
G)− φLi(wi) (6.4)

where L(wt
G) is the global loss function, and Li(wi) is the local loss function of partici-

pant i. We removed the sum from the equation to be able to determine the IG of each

participant individually.

Equation 6.4 fails to meet the necessary criteria for participant selection, as it yields

a high value for scenarios with high entropy in P and low entropy in St subsets. Optimal

participant selection is characterized by choosing individuals who attain a low L(wt
G),

reflecting collective performance, while simultaneously exhibiting a high Li(wi). The

high local loss indicates a necessity for further epochs to minimize their individual loss

effectively. It means we strive to achieve a low global loss to optimize the overall model

performance. Concurrently, participant selection within FL operates with a contrasting

goal. The aim is to identify participants associated with a high loss value and work on

minimizing it. While the overall FL training targets global loss reduction, the participant

selection process focuses on minimizing individual or local losses. As a result, an effective
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scoring method for participant selection must strike a balance between lower global loss

and higher local loss. Therefore, we use the negative log of both local and global loss

functions to achieve this property. Thus, our participant scoring method I definition is

as follows:

I = − ln(L(wt
G))− φ×− ln(Li(wi))

= − ln(L(wt
G)) + φ ln(Li(wi))

(6.5)

As well as the traditional IG, our participant scoring method returns a higher value

for participants who can contribute to the training and a low value for those who cannot.

Based on Equation 6.5, the participants with a lower local loss than the global loss are

scored with a negative number. On the other hand, participants with a higher local

loss than the global loss have a positive score number, usually greater than one. It is

essential to highlight that our participant scoring method cannot replace the traditional

IG. FedSBS is a scoring equation based on IG for the FL participant selection scenario.

We use the entropy of each participant dataset to determine the weighting of their

individual local loss. Our proposal uses the dataset entropy to punish participants with

an imbalanced dataset. Every dataset that the target class has an uneven distribution is

called an imbalanced dataset. In such a case, using the entropy to weight ln(Ln(wn)) may

have a different effect if ln(Ln(wn)) is positive or negative. Furthermore, if ln(Ln(wn))

is positive, then φ = entropy; otherwise, φ = 1 − entropy. It is necessary to verify the

latter because weights have different effects on negative and positive numbers.

φ =

{
1 +

∑
pc log2(pc), if ln(Li(wi)) < 0

−
∑

pc log2(pc), if ln(Li(wi)) ⩾ 0
(6.6)

Equation 6.6 defines φ, where pc is the proportion of class c in participant’s i dataset.

6.2.1 Participant Selection Method

Alongside utilizing the participant scoring method, our method addresses several critical

elements to improve the robustness and efficiency of participant selection:

1. Balancing Exploration and Exploitation: Our method strategically navigates

the trade-off between randomness and greed. It leverages knowledge from existing,
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high-score participants while maintaining a level of randomness to explore potential

contributions from other participants. This balance optimizes the learning process

and enhances model performance.

2. Ensuring Diversity: Our approach actively prevents the over-selection of partic-

ipants. Over-selected participants, those who are frequently chosen, could bias the

training process. By preventing this, our method ensures a diverse range of partic-

ipants contributing to the model, which leads to a more robust and generalizable

global model.

3. Prioritizing Scalability: Our solution is designed to be scalable. Recognizing

that selecting all participants in large-scale scenarios is not feasible, our method

only relies on exploring a subset of participants. It thus provides an efficient and

effective selection process that scales with the size of the participant pool.

By addressing these elements, FedSBS resolves significant challenges of participant selec-

tion in FL and improves the global model’s accuracy and reliability.

FedSBS uses the epsilon greedy approach to balance between the exploration of se-

lecting new participants and exploiting the already known gain of selecting participants.

We opted for the epsilon greedy approach in FedSBS due to its efficacy and computational

simplicity, ensuring an efficient participant selection process without incurring significant

computational overhead. The epsilon greedy policy selects the current best participant

with the probability of 1 − ϵ and a random participant selection with the probability of

ϵ, where 0 < ϵ < 1.

To encourage high exploration at the beginning of training, we start with ϵ = 1. As

training progresses, we aim to reduce ϵ to a predefined value b by the end of training

to control the algorithm’s greediness. To achieve this transition smoothly, we define the

decay ϑ as follows:

ϑ =
t
√
b (6.7)

where t represents the total number of aggregation rounds, and b the last desireable value

of ϵ. This strategy allows a balance between exploration and exploitation throughout the

training process.

Our participant selection method incorporates a participant blocker mechanism to

prevent the over-selection of participants. This mechanism observes the number of times
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each participant is selected. It applies a Boltzmann distribution to determine the like-

lihood of a participant being blocked from further selection after their initial selection.

In essence, if a participant has been chosen once, their probability of being blocked from

further selection increases with each subsequent selection, promoting a more balanced dis-

tribution of participant selection and reducing the likelihood of over-reliance on a small

subset of participants. Therefore, the selection of a participant who has already been

chosen is determined by

P (Ωn, T ) = exp

(
−Ωn

T

)
(6.8)

where Ωn denotes the frequency with which participant n has been selected in previous

rounds, and T serves as the temperature hyperparameter. Notably, the likelihood of

selecting a participant is elevated during the early rounds when the temperature parameter

is high. As much as a participant is selected, the probability of being selected again

diminishes, thereby fostering a balanced distribution of participant selection over multiple

rounds.

The pseudo-code for FedSBS is presented in Algorithm 4. The pseudo-code requires

input parameters, including a temperature T for computing the probability of re-selecting

a participant, a minimum epsilon value ϵmin, a set of participants S, and the number of

aggregation rounds (epochs), and the number of selected participants s. Its output is the

global model at the tth aggregation round. Lines (1 - 4) are assigned to initialize specific

variables. The variable ϵ is pre-set to one for subsequent utilization in the epsilon-greedy

algorithm, while ϑ is defined as the decay coefficient for the epsilon value. Concurrently,

the score variable I is instantiated at zero for all participants because the score com-

putation is unfeasible during the first aggregation round. The variable Ω monitors and

quantifies the selection frequency for each participant within the training process. It is

critical to underscore that the participant’s selection frequency, as quantified by Ω, in-

versely influences the likelihood of their future selection. This built-in safeguard ensures

a balanced participant representation by limiting the dominance of frequently selected

participants in the training process. The INIT function initializes the Ω and I sets, each

containing the participant’s ID and the value 0. Lines (5-21) illustrate the epsilon greedy

algorithm.

In Line 7, the code generates a random value between 0 to 1. If this value falls below

ϵ, it selects a random participant. Since ϵ starts with the value 1 (Line 1), the initial selec-

tion always occurs randomly. The code then utilizes the SelectedParticipant function

(Line 8) to select a participant randomly, and this function, described in Algorithm 5,



6.2 Participant Scoring Method 73

Algorithm 4: Federated Score-Based Selection pseudo-code.
Input: T , ϵmin, N , epochs, s
Output: wt

G

1 ϵ← 1
2 η ← t

√
ϵmin

3 I ←INIT()
4 Ω←INIT()
5 for t < epochs do
6 for i < s do
7 if unif(0, 1) < ϵ then
8 n← SelectParticipant(T,Ω, “random" , N, I)
9 Ωn ← Ωn + 1

10 St.insert(n)

11 end
12 else
13 n← SelectParticipant(T,Ω, “greedy" , N, I)
14 Ωn ← Ωn + 1
15 St.insert(n)

16 end
17 i← i+ 1

18 end
19 for each participant n ∈ St do
20 wn ← LocalUpdate(n, wG)
21 In ← − ln(L(wG)) + φn ln(Ln(wn))

22 end
23 wt

G ←
∑N

n=1
Dn

D
wn

24 ϵ← ϵ× η

25 end
26 return wG

determines the probability of re-selecting a participant. Following this, the code updates

the selection count stored in Ω (Line 9) and adds participant n to the selected participants

set St (Line 10).

If the random value generated in Line 6 surpasses ϵ, the code selects the best partici-

pant based on our participant scoring method I, using the SelectParticipant function

(Line 13). It also updates Ω and includes participant n in the selected participant set St

(Lines 14 and 15). The epsilon greedy algorithm provides a trade-off between exploring

new participants and exploiting the best participants selected in previous rounds based

on the score.

Each participant performs a local update and sends the local model and its local loss

to the server in Lines 19 and 20. In line 21, the code updates each participant’s score
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I according to our participant scoring method. Finally, the server performs the global

aggregation in line 23 and decays the epsilon in line 24.

Algorithm 5: Participant selection function pseudo-code.
Input: T , Ω, selection_type, N , I
Output: n

1 if selection_type = "random" then
2 n← RANDOM(N)
3 end
4 else
5 n←MAX(I)
6 end
7 b← 1
8 while b = 1 do
9 P (Ωn, T ) = exp

(
−Ωn

T

)
10 if unif(0, 1) < P (Ωn, T ) then
11 b← 0
12 end
13 else
14 if selection_type = "random" then
15 n← RANDOM(N)
16 end
17 else
18 n←MAX(I)
19 end
20 end
21 end
22 return n

Algortihm 5 describes the function SelectParticipant that determines the proba-

bility of re-selecting a participant during the federated learning process and then selects

a participant. The pseudo-code requires input parameters such as temperature T , and Ω,

which counts the number of times each participant has been selected. It also receives a

string value, selection_type, which determines if the selection should be greedy or ran-

dom. Another input parameter is the participant set N , which contains all participants.

The final input, denoted as I is a list that archives the scores of the participants. Lines

1-6 discern between a greedy (Line 5) and a random (Line 2) selection and execute the

selection accordingly. The variable b, instantiated in Line 7, sets the duration for which

the algorithm will attempt to select a non-blocked participant within the while loop. In

Line 9, the algorithm calculates the probability of accepting a selected participant, a value

between 0 and 1. Note that a never-before-selected participant will always have a selection

probability of 100%, according to the equation. The algorithm then generates a random
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number between 0 and 1. If the selection probability surpasses this random number (Line

10), the algorithm selects the participant, resets variable b to 0 (Line 11), and breaks the

while loop. If the selection probability is less than the random number, the participant is

considered blocked, and the algorithm repeats the selection process, randomly choosing

another participant (Line 15) or greedily (Line 18) and reassessing the probability.

In summary, FedSBS presents a robust and adaptive method for participant selection

within federated learning environments. This is evidenced by our selection strategy, which

demonstrates the potential to enhance global model performance. The approach is further

characterized by its adaptability, as evidenced by the dynamic scoring of participants upon

each selection, ensuring continuous alignment with evolving model requirements. Having

laid the theoretical groundwork for FedSBS, the next section will provide an empirical

evaluation of our method.

6.3 FedSBS: Evaluation and Results

In this section, we evaluate the proposed FedSBS in network intrusion detection use

case. The main goal of the evaluation is to compare our participant selection method

FedSBS with state-of-the-art aggregation algorithms and participant selection methods.

Another purpose of the evaluation is to compare the performance of FedSBS with state-

of-the-art participant selection method in an environment with malicious participants.

We compare FedSBS with the state-of-the-art aggregation algorithm to demonstrate the

effectiveness of FedSBS in addressing the statistical challenge in FL. We aim to emphasize

the significance of the participant selection method in mitigating the statistical challenge,

as the new aggregation algorithm has been put forth as a solution to this challenge. In

the evaluations, we intentionally excluded the use of FedSA to ensure that the observed

contributions and performance solely derive from FedSBS.

We have developed a Python-based simulator1 using the CICIDS2017 dataset [135].

The CICIDS2017 [135] is an open-source network dataset created by the Canadian In-

stitute for Cybersecurity (CIC). We use PyTorch to implement our participant selection

method and the baselines. Our machine learning model consists of a multilayer perceptron

with two hidden layers. The first hidden layer comprises 50 neurons, while the second

contains 100 neurons. Our simulator ensures that the dataset is split into three parts with

an equal balance of classes - 80% of attack traffic labels and 30% of normal traffic labels.
1Available at https://github.com/helioncneto/FederatedLearningSimulator.
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The first part of the dataset is used for training, the second, for validation, and the third,

for testing. The training set is used to train the machine learning models. The validation

set is a separate portion of the dataset not used to train the model. It provides an unbi-

ased evaluation of the model during the aggregation rounds. The test set is used to assess

the performance of the model after its finalization. The training, validation, and testing

sets comprise 90%, 5%, and 5% samples. The simulator applies the Dirichlet distribution

to divide the training set for each participant to simulate Non-IID data [148, 149, 21]. We

selected the Dirichlet distribution to distribute data among participants due to its flexi-

bility in generating a range of participant data profiles [148], from highly similar to highly

distinct, effectively capturing the diverse and non-uniform class distributions typical in

real-world FL scenarios.

We use Dirichlet distribution to simulate Non-IID data. The Dirichlet distribution is

a multivariate distribution that generates a probability distribution over a set of k cate-

gories, where k is a positive integer. Each draw from the Dirichlet distribution produces

a probability vector, i.e., a vector of k probabilities that sum to 1, where the values in

the vector represent the probabilities of each category. We generate multiple independent

samples from the Dirichlet distribution with different sets of parameters, representing

different underlying distributions to generate Non-IID data. The resulting probability

vectors will differ for each observation, reflecting the different underlying distributions.

To replicate data heterogeneity characteristic of non-IID data, we utilize a Dirichlet dis-

tribution with parameters 0.3, 0.6 to sample the proportions of labels, as inspired by the

methodology outlined in [148].

In our simulations, each participant holds a different amount of data, and the simulator

randomly selects the amount for each participant. It is important to highlight that we

run each evaluation for 100 aggregation rounds because the global model performance

remains relatively stable after 90 rounds of aggregation. We conduct multiple runs for

each evaluation to ascertain statistical significance. We calculated the mean alongside

a 95% confidence interval. Each run utilized a distinct data distribution among the

participants. For each evaluation, we computed the mean and standard deviation to assess

the variance in the results. For each aggregation round, we select 30% of participants

for the aggregation in every evaluation. Our previous work found that selecting more

participants does not significantly impact the global model performance [16].

We evaluate FedSBS in comparison to three aggregation algorithms, Federated Dy-

namic Regularization (FedDyn) [150], FedAGM [21], and Slow Momentum (SlowMo) [151].
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Additionally, we compare it with FedAvg [57], the first aggregation algorithm. The objec-

tive is to conduct an evaluation of our participant selection mechanism alongside state-of-

the-art aggregation algorithms, thereby underscoring the critical role that participant se-

lection plays in optimizing the overall FL performance. Furthermore, we compare FedSBS

with two other participant selection methods, Oort [32] and Wang et al. [152]. The idea is

to compare our participant selection mechanism with state-of-the-art participant selection

mechanisms. Moreover, we evaluate our participant selection method in an environment

with malicious participants, using the participant selection methods mentioned above as

baselines. The attacker model is described in Section 6.3.1.

6.3.1 Attacker Model

The attacker performs a byzantine attack, using random data points to harm the training

and attempting to disrupt the training process [19, 98]. Byzantine attacks in federated

learning occur when malicious participants, or Byzantine nodes, inject random data into

the system to cause the collapse of the global model. These attacks can occur when the

malicious nodes are part of the overall learning system. These attacks can significantly

impact the integrity and performance of the global model.

The attacker is a participant in the federated learning environment and uses this

access to inject fake data points into the local dataset. These fake data points can be

crafted in such a way as to bias the training results and cause inaccurate or undesirable

outcomes. In our scenario, we consider three distinct types of malicious participants: I)

constant malicious participant, II) p-malicious participant, and III) aggregation k mali-

cious participant. The constant malicious participant is a type of malicious participant

that behaves maliciously throughout the training process. The p-malicious participant

utilizes their actual data but also may use fake data with a probability p that follows a

Boltzmann distribution. The adoption of a Boltzmann distribution in characterizing the

behaviour of the p-malicious participant is predicated on the need for a stochastic model

that captures the inherent variability and unpredictability of adversarial actions within

the federated learning ecosystem. Moreover, the distribution’s parameters can be tuned

to reflect the fluctuating intensity of the attacks, thereby offering a versatile and realistic

model of the attacker’s profile. Finally, the aggregation k malicious participant maintains

honest behaviour until it reaches aggregation round k, at which point it begins using fake

data.
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6.3.2 Evaluation of Novel Aggregation Algorithm

We first evaluate FedSBS using state-of-the-art aggregation algorithms as the baseline.

This evaluation compares the performance of FedSBS, a participant selection method,

with those aggregation algorithms. Both approaches are intended to enhance the perfor-

mance of the global model in FL, but they do so with different approaches. The state-

of-the-art aggregation algorithms we use as baseline are FedAGM [21], FedDyn [150],

SlowMo [151], and FedAvg [10] (the first aggregation algorithm). In our evaluation, we

included FedAvg as a representative of simpler aggregation algorithms, encompassing ap-

proaches like Federated Stochastic Gradient Descent (FedSGD). FedAGM [21] is a feder-

ated learning aggregation algorithm that enhances stability and convergence by providing

participants with an accelerated model, informed by global gradients, to guide local up-

dates, effectively reducing bias and improving update consistency. FedDyn [150] optimizes

FL training by orchestrating cooperation among a random subset of devices each round,

employing dynamic regularizers to align local and global solutions, thereby enhancing

training efficiency and robustness across diverse device environments in the face of device

heterogeneity, partial participation, and unbalanced data. SlowMo [151] enhances the

generalization performance of the global model by synchronizing participants periodically

for a momentum update after several aggregation rounds of a base optimizer, thereby

achieving efficient training with theoretical convergence guarantees, even in non-convex

scenarios.

Subsequently, we evaluate the accuracy, precision, sensitivity, specificity, and F1-

score for the validation set in each aggregation round and for the test set at the end of

collaborative training. Precision evaluates how many attack samples the model predicted

correctly. Sensitivity, or Recall, measures the proportion of actual attack cases predicted

as an attack by the model. On the other hand, specificity measures the proportion of

actual normal traffic predicted as normal traffic by the model. The F1 score combines

precision and sensitivity by taking their harmonic mean. In the IDS scenario, a high

F1 score would indicate that the model accurately detects attack traffic (high precision)

while also detecting most of the attack traffic (high sensitivity). In these evaluations, it

is pertinent to note that we did not include any malicious participants to focus solely on

assessing the performance of the methods.

Figure 6.2 presents an analysis of the FedSBS against novel aggregation algorithms

and the FedAvg for detecting attacks on network traffic. We used boxplots to represent the

accuracy, F1 score, precision, sensitivity, and specificity scores. We have many baselines,
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(a) Accuracy in the validation set.
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(b) F1 score in the validation set.
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(c) Precision in the validation set.
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(d) Sensitivity in the validation set.
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(e) Specificity in the validation set.

Figure 6.2: The distribution of metrics on the validation dataset. Our proposed method
demonstrates less variation and achieves over 80% accuracy in detecting attacks and
normal traffic. In contrast, the baseline algorithms better detect normal traffic than
attack traffic.

and a line plot would have been unfeasible due to its cluttering effect. While using boxplots

means that we lose the temporal relationship between the different baselines, it is a better

approach to represent the performance of the algorithms clearly and understandably.

Our proposed FedSBS achieves an average accuracy of 91%, higher than all the other

baselines. Our algorithm also varied less than all the other baselines except for FedAGM.

Interestingly, we observed that FedDyn has the most variation in every evaluation. It

is important to emphasize that throughout the training, as assessed using the validation

set, the variation in the F1 score of our proposal is less pronounced than the aggregation



6.3 FedSBS: Evaluation and Results 80

Accuracy F1 Score Precision Sensitivity Specificity0

20

40

60

80

100
Va

lu
e 

(%
)

FedSBS FedAgm FedAvg FedDyn Slowmo

Figure 6.3: Performance metrics for the test set, comparing FedSBS participant selection
with aggregation algorithms. FedSBS demonstrates the highest accuracy and F1-score,
92.8%, and 82.7%, respectively, with a low error bar compared to the aggregation algo-
rithms.

algorithms under evaluation. Our participant selection aims to select participants with

more contributions, which is crucial to achieving this performance. It is important to

highlight that the participant selection of the baseline algorithm is random.

While our precision is smaller than the other baselines, this was expected since we

classified more samples as attack samples, leading to more false positives. However, it is

essential to note that our participant selection method also had more true positives than

the other baselines. Finally, FedSBS could have been better than the baseline in terms of

specificity because the baseline algorithms failed to detect attacks effectively, classifying

almost everything as normal traffic.

The accuracy of the baseline algorithms is good because the validation set has more

normal traffic than attack traffic. While the baselines effectively detect normal traffic,

they perform poorly in detecting attacks, a critical objective of any intrusion detection

system.

Besides evaluating the validation set, we also evaluate the final global model using the

test set. The test set is an important part of the machine learning process as it provides

a way to evaluate the performance of a trained model. The test set contains data samples

the model has not seen during training and validation. Its performance on this unseen

data is used to measure the generalization ability of the global model. It helps ensure

the model has learned patterns applicable to unseen data and not just memorized the

training and validation data.
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Figure 6.3 compares FedSBS against several state-of-the-art aggregation algorithms

across crucial performance metrics in the test set. The results are presented as mean

values and a confidence interval of 95%, calculated over multiple runs for each method.

Our proposed solution demonstrates superior performance across several metrics. In terms

of accuracy, our method achieves a mean of 92.89% with a low error bar compared to all

baseline approaches. FedSBS also achieves the highest F1 score with a mean of 82.7% with

a low error bar compared to all baseline approaches, indicating a solid balance between

precision and recall. While the precision of our method (80.53%) is lower compared

to some of the baselines, FedSBS significantly outperforms them in terms of sensitivity,

with a mean of 85.32%. This highlights that our method better identifies attack traffic,

reducing the false-negative rate. Lastly, FedSBS achieves a mean specificity of 94.75%,

which is competitive with the baseline approaches. Our proposed method outperforms the

baseline approaches across multiple performance metrics. It consistently exhibits lower

error bar, indicating the robustness and reliability of our participant selection for the

statistical challenge.

In conclusion, evaluating our participant selection method demonstrates the signif-

icant impact of an effective participant selection strategy on addressing the federated

optimization inherent in federated learning. Our participant selection method outper-

forms the baseline approach (FedAvg) and the novel aggregation algorithms, emphasizing

the importance of participant selection for FL. The results highlight the robustness and

reliability of our participant selection method in tackling the complexities of unbalanced

datasets.

In conclusion, evaluating our participant selection method against state-of-the-art

aggregation algorithms demonstrates the significant impact of an effective participant

selection strategy on addressing the federated optimization inherent in federated learning.

Our participant selection method outperforms the baseline approach (FedAvg) and the

novel aggregation algorithms, emphasizing the importance of participant selection for FL.

The results highlight the robustness and reliability of our participant selection method in

tackling the complexities of unbalanced datasets.

6.3.3 Evaluation of Participant Selection Methods

In this subsection, we examine the performance of FedSBS in comparison with two state-

of-the-art baselines, Wang et al. [152] and Oort [32]. The evaluation aims to provide a

comprehensive analysis of the effectiveness of our proposal, particularly concerning unbal-
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anced datasets. By assessing key metrics such as accuracy, F1 score, precision, sensitivity,

and specificity over multiple aggregation rounds, we aim to demonstrate the effectiveness

of our proposal in addressing the challenges posed by unbalanced data, highlighting its

potential for real-world applications in IDS.

Figure 6.4 compares our proposal and the baseline participant selection methods over

100 aggregation rounds, demonstrating the superior performance of our proposal in terms

of F1 score and sensitivity. These metrics are crucial for unbalanced datasets, such as

those typically encountered in IDS. F1 score and sensitivity ensure that minority classes,

in this case, attack traffic, are not overlooked, providing a balanced evaluation of precision

and recall. A high F1 score is crucial for an effective IDS, as it must be adept at detecting

and predicting attacks to maintain a secure network environment.

Although FedSBS exhibits lower precision and specificity due to its more assertive

approach in classifying samples as attacks, resulting in a higher false-positive rate, it still

surpasses the baselines regarding f1 score and sensitivity. Notably, Oort demonstrates

higher precision but exhibits greater variability than FedSBS, as evidenced by the confi-

dence interval. Furthermore, FedSBS is the only method whose confidence interval does

not reach 0. This demonstrates that FedSBS has a better balance between detecting

genuine attacks and minimizing false alarms, a crucial consideration in maintaining an

efficient and reliable IDS.

In contrast, the baselines exhibit higher specificity due to their tendency to classify a

larger proportion of samples as normal traffic, thereby revealing a bias toward the more

populated class. While this approach may result in fewer false positives, it also increases

the likelihood of missed attacks, leading to potentially severe consequences regarding

network security.

Figure 6.5 compares the performance metrics for three methods — FedSBS, Oort [32],

and Wang et al. [152] in the test set. FedSBS demonstrates superior accuracy, F1 score,

precision, and sensitivity performance compared to the other two approaches. It in-

dicates that our proposed method provides a more balanced and reliable classification

across classes, making it a potentially better choice for unbalanced problems. On the

other hand, both Oort [32] and Wang et al. [152] methods achieve high specificity values.

This high specificity can be attributed to their inclination to classify samples favoring the

predominant class. While this may result in an better performance in identifying true

negatives, it also suggests that these methods struggle to identify positive samples accu-

rately. Consequently, the high Specificity values for Oort [32] and Wang et al. [152] should
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(b) F1 score in the validation set.

0 20 40 60 80 100
Aggregation Round

0
20
40
60
80

100

Pr
ec

isi
on

Proposal Oort Wang et al.

(c) Precision in the validation set.

0 20 40 60 80 100
Aggregation Round

0
20
40
60
80

Se
ns

iti
vi

ty

Proposal Oort Wang et al.

(d) Sensitivity in the validation set.
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(e) Specificity in the validation set.

Figure 6.4: Performance of FedSBS and baseline participant selection methods across
aggregation rounds. FedSBS has a superior F1 score and sensitivity. FedSBS exhibits
lower precision and specificity due to a more assertive approach in classifying samples as
attacks, leading to a higher false-positive rate. In contrast, the baselines maintain higher
specificity by leaning toward classifying a larger proportion of samples as normal traffic,
thus revealing a bias toward the more populated class.

be interpreted cautiously, as their overall performance may be sub-optimal in applications

where with a predominant class, such as IDS scenario. It is important to highlight that the

performance of baseline methods is considerably worse compared to the results obtained

from the validation data.
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Figure 6.5: Comparison of the performance metrics for FedSBS, Oort, and Wang et al.
methods. The proposal method outperforms the baseline methods regarding accuracy,
F1-Score, precision, and sensitivity. Oort and Wang et al. achieve high specificity, which
can be attributed to their tendency to classify samples in favor of the predominant class.

6.3.4 Evaluation with Malicious Participants

We present the evaluation of participant selection methods with malicious participants.

We evaluate the performance of FedSBS and compare it against two baselines — Oort

and Wang et al. — in the presence of malicious participants. The key performance

metrics examined in this evaluation include accuracy, F1 score, precision, sensitivity, and

specificity.

To evaluate the robustness of our method in the face of adversarial activities, we

examine two distinct ratios of malicious to benign participants: 20% and 60%. This

evaluation is designed to demonstrate the resilience and efficacy of the FedSBS approach,

as well as that of baseline methods, across varied adversarial landscapes. A lower rate

of 20% was chosen to simulate a more common, real-world scenario where the majority

of the network participants are benign. This rate provides a more conservative estimate

and allows us to assess how well our methods perform when participants collude to attack

the global model. On the other end, a 60% malicious rate represents an extreme case

that pushes the robustness of the federated system to its limits. While exceeding 50%

may be considered improbable in many real-world applications, we argue that it serves

as a valuable stress test. This extreme scenario provides critical insights into the upper

bounds of our method ability to withstand adversarial activity. To this end, we consider

three specific scenarios:



6.3 FedSBS: Evaluation and Results 85

1. Balanced Malicious Profiles: In this scenario, three malicious participant profiles

are evenly distributed. The malicious-p participants are adversarial with a 50%

probability, whereas the aggregation k malicious participants become adversarial

only after the 50th aggregation round.

2. Variable Probability Malicious Participants: We evaluate solely the malicious-p par-

ticipants. We vary the probability p of a participant being malicious to quantify the

level of disruption that varying levels of malicious activity can introduce into the

system.

3. Variable Aggregation Round Malicious Participants: We concentrate on aggregation

k malicious participants. The variable k is adjusted to assess the effect of malicious

activity at different points in the aggregation process.

In the balanced malicious profiles scenario, the probability of a malicious partici-

pant behaving maliciously is set at 50%, thereby establishing an equilibrium in which the

propensity for malicious activity is counterbalanced by an equivalent likelihood of benign

participation, creating an environment of uncertainty. It allows us to test the resilience

of FedSBS and baseline methods under conditions where the malicious participants are

equally likely to be either benign or malicious participants. This evaluation will provide

insights into each method, ultimately guiding the selection of the most appropriate ap-

proach for ensuring reliable and secure participant selection in the presence of malicious

actors. It is a complex scenario for assessing whether our methods can distinguish between

honest and adversarial participants when the odds are evenly split. Nonetheless, in the

balanced malicious profiles scenario, our choice of the participant being malicious after

50th round serves two purposes. First, it provides ample time for the aggregation process

to stabilize, offering a more clear-cut assessment of the impact of adversarial activity.

Second, it reflects a more realistic attack model where adversaries might wait to gain

trust or accumulate sufficient scores before acting maliciously. By choosing a later aggre-

gation round, we aim to assess the robustness of our methods in a longer-term operational

setting.

For the Balanced Malicious Profiles evaluation, Figures 6.6 and 6.7 compare FedSBS,

Oort and Wang et al., evaluating their performance across five critical metrics: accuracy,

F1 score, precision, sensitivity, and specificity. A key feature of FedSBS is the participant

blocker, which mitigates malicious participants impact on the collaborative training pro-

cess. The participant blocker contributes to the stable training and superior effectiveness
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of our model, even in scenarios with a significant presence of malicious participants (20%

in Figure 6.6 and 60% in Figure 6.7).
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Figure 6.6: Performance comparison of FedSBS, Oort, and Wang et al., considering the
Balanced Malicious Profile with 20% of the malicious participants. Oort achieved the
highest accuracy, but its performance is less meaningful due to the unbalanced dataset.
FedSBS outperformed the baselines in F1 score and sensitivity, with lower variability,
while the baselines excelled in specificity by predominantly classifying samples as normal
traffic.

FedSBS provides a trade-off between precision and sensitivity, as evidenced by its out-

standing F1 score performance. In contrast, Oort and Wang et al. exhibit high variance,
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(d) Sensitivity in the validation set.

0 20 40 60 80 100
Aggregation Round

80
85
90
95

100

Sp
ec

ifi
cit

y

Proposal Oort Wang et al.

(e) Specificity in the validation set.

Figure 6.7: Line graphs comparing the performance of FedSBSl, Oort, and Wang et al.,
considering the Balanced Malicious Profiles evaluation, with 60% malicious participants.
FedSBS demonstrates superior effectiveness and adaptability, outperforming the baselines
in crucial metrics for unbalanced data and maintaining lower variability.

with some models excelling in specificity but struggling in sensitivity. The resilience of

FedSBS to the attacker model, as detailed in Section 6.3.1, further highlights its adapt-

ability and robustness in challenging scenarios. By incorporating the participant blocker

and our participant selection method, our model effectively avoids malicious participants,

resulting in improved performance and stability compared to the baselines.
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Figure 6.8: Comparison of test set performance metrics for FedSBS, Oort, and Wang et al.
methods in the Balanced Malicious Profiles evaluation varying proportions of malicious
participants (20% and 60%). The figure highlights the robust performance of the FedSBS
method across all metrics, demonstrating its resilience even in the presence of adversarial
actors.

Figure 6.8 compares the test set performance metrics for FedSBS, Oort, and Wang

et al., evaluated under different proportions of malicious participants (20% and 60%).

Notably, FedSBS method exhibits superior performance across key metrics, particularly

in F1-Score, Precision, and Sensitivity. These metrics are critical when dealing with

unbalanced datasets, as they provide a more comprehensive understanding of the model’s

performance in identifying both positive and negative classes.

A higher F1-Score indicates that our method maintains a balanced performance in

identifying true positives and true negatives, even in the presence of adversarial actors.

Precision measures the proportion of true positive predictions among all positive predic-

tions, sensitivity evaluates the algorithm’s ability to identify positive instances correctly

(attack traffic), and specificity is the ability to identify false instances (normal traffic).
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Those metrics play a crucial role in determining the robustness of a method in handling

unbalanced datasets because they can express the performance of the model on both

classes.

The test set results demonstrate that our method surpasses the baselines in perfor-

mance in the Balanced Malicious Profiles evaluation, even when evaluated on previously

unseen data. When comparing FedSBS to the baselines, it is evident that our approach

demonstrates superior performance on the test set. This outstanding performance high-

lights the effectiveness of our method in addressing the challenges posed by unbalanced

datasets and adversarial participation, making it a promising solution for ensuring reliable

and secure participant selection in such scenarios.

In subsequent evaluations, we assess the isolated impact of individual attack profiles

to comprehend their influence on the holistic training process. This approach contrasts

with the ‘Balanced Malicious Profiles ’ scenario, where the model’s performance is eval-

uated at each aggregation round using a validation set, followed by a final evaluation

with the test set. In the following cases, we utilize the test set to evaluate the global

model while varying the critical variables associated with the profiles under examination.

Specifically, in the ‘Variable Probability Malicious Participants ’ scenario, we manipulate

the probability p of a participant acting maliciously. Conversely, in the ‘Variable Ag-

gregation Round Malicious Participants’ scenario, we adjust the aggregation round k at

which a participant commences malicious behaviour. This methodical variation allows us

to observe the model’s performance degradation at each alteration stage.

As illustrated in Figure 6.9, FedSBS maintains a slight reduction of performance across

all metrics as the malicious probability is increased in the scenario where the malicious

participant rate is 20%. When faced with continuous malicious participants — 100%

malicious probability, the performance of our proposal and the baselines is significantly

compromised. The results indicate that our approach achieved approximately 50% in

F1 score, 40% in precision, 98% in sensitivity, and 38% in specificity when participants

act maliciously all the time. We observe that when the participant acts maliciously

throughout all the training, our system effectively detects attacks, albeit with a high rate

of false positives. It is also noteworthy that Oort exhibits enhanced precision compared

to FedSBS and Wang et al., especially in malicious probability 75%. The near 100%

precision of Oort indicates that the model might be overlooking many other positive

instances (attack traffic), indicated by the low sensitivity (recall), resulting in a low F1

score. Notably, our proposal outperformed the baseline F1 score when participants had a
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Figure 6.9: An evaluation of Our proposal, Oort, and Wang et al. methods across the
metrics F1 Score, Sensitivity, Specificity, and Precision in the face of different malicious
probability levels with a confidence interval of 95%. In this scenario, 20% of participants
are malicious. Collectively, they offer a holistic view of each method’s resilience and
performance when challenged with adversarial conditions.

probability of up to 75% to behave maliciously. The F1 score is particularly important in

the context of collaborative IDS, as our objective is to strike an optimal balance between

accurately identifying true positives and concurrently minimizing both false negatives and

false positives.

Figure 6.10 shows the performance of our proposed model compared with the state-of-

the-art participant selection techniques, Wang et al. and Oort, in an environment where

60% of participants are malicious. The precision of our approach achieves around 70%,

exhibiting a slight decrement as the malicious probability escalates to 75%, followed by

a considerable decline when extending to 100% of malicious probability. Noteworthy, the

confidence interval demonstrates that our method has a lower precision variance than

Oort, which has superior precision. Moreover, our approach outperforms the benchmark

methods concerning the F1 score. Similar to previous evaluations, the baselines report

specificity near 100%, indicating a propensity for bias towards the predominant class.

The following evaluations concern the ‘Variable Aggregation Round Malicious Partic-
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Figure 6.10: Comparative analysis of the FedSBS proposal against Oort and Wang et
al. methods, depicting precision, sensitivity, specificity, and f1 score across varying prob-
abilities of malicious activity. The FedSBS model demonstrates superior f1 score and
sensitivity, with specificity up to 80% and precision around 70%. The results indicate
its efficacy in accurately detecting and minimizing false negatives in network security
applications. In this evaluation, 60% of the participants are malicious.

ipants’ scenario. In this scenario, the evaluation exclusively concentrates on participants

who commence malicious activities after a predetermined aggregation round. The ob-

jective is to evaluate and compare the performance of our proposed method against the

baseline methods in mitigating the impact of delayed adversarial behaviour within the

method.

Figure 6.11 illustrates the effectiveness of our proposed method in scenarios where

malicious participants begin their adversarial actions at different aggregation rounds, set

within an environment that includes a 20% proportion of malicious participants. Con-

versely, if the malicious entities commence their malicious actions after gaining trust, the

inflicted damage is more severe. Notably, the F1 score of our proposal stands at 70%

when malicious behaviour is initiated post the 20th aggregation. This performance dete-

riorates drastically to 10% F1 score, with the confidence interval narrowing to zero, when

malicious behaviour begins after the 60th aggregation. It indicates that our method can
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Figure 6.11: Comparative analysis of Proposal, Oort, and Wang et al. varying the ag-
gregation the malicious participants start acting malicious. The Proposal method consis-
tently demonstrates resilience, maintaining higher performance levels relative to the other
methods under a scenario 20% of participants are malicious.

avoid selecting malicious participants during the training when they act maliciously at

the beginning of the training. Moreover, comparative analysis indicates that our method

outperforms the baseline methods, underscoring the robustness of our approach against

adversarial participants.

Figure 6.12 presents our proposed method performance compared to baseline meth-

ods as a function of the aggregation round in which participants commence malicious

behaviour within a context where 60% of participants are malicious. In this scenario,

the aggregation round at which participants begin to exhibit malicious behaviour is in-

different to the performance, owing to the predominance of malicious actors within the

environment. Consequently, every method exhibits suboptimal performance, with F1

scores below 40%. In our analysis, it is evident that our method tends to classify most of

the traffic as an attack, in contrast to Oort and Wang et al., which are inclined to classify

most traffic as normal. This observation is substantiated by our method’s high sensitivity

and low specificity, while Oort and Wang et al. exhibit the opposite pattern.
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Figure 6.12: Performance evaluation of Proposal, Oort, and Wang et al. methods under
a scenario with 60% malicious participants. It is evident that the performance of all
methods is compromised irrespective of the onset of adversarial behaviour. Notably, our
proposal consistently outperforms the baseline methods in terms of F1 score and precision.

6.3.5 Discussions and Remark

This Chapter proposed a FL training method, incorporating FedSBS participant selection

and a global momentum aggregation algorithm, which tackles statistical challenges, par-

ticularly in adversarial scenarios. The participant scoring, epsilon-greedy selection, and

participant blocking strategies enhance method robustness. Besides, the global momen-

tum term accelerates convergence, resulting in superior overall performance compared to

competing state-of-the-art methods. Evaluations, especially in scenarios with malicious

participants, demonstrated the proposed method’s resilience, achieving notable F1-Score

and accuracy even in the presence of malicious participants. Comparisons with state-of-

the-art methods showcased our approach’s superiority, attaining 92% accuracy and 82%

F1-Score in scenarios without malicious participants, while our method achieved over 80%

F1-Score and 90% accuracy on the test set in the balanced malicious profile, showcasing

its resilience against attacks. The proposed method’s robustness, scalability, and per-

formance position it as a promising solution for secure and efficient federated learning

systems. Future research may explore advanced privacy-preserving techniques, including
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homomorphic encryption and parameter masking, to further enhance the security and

confidentiality of FL training processes.



Chapter 7

Conclusion

Federated learning for IDS shows promising results in detecting new attack patterns.

However, federated learning has several optimization problems since the aggregation server

does not access the data. The random participant selection approach of the traditional

federated learning aggregation algorithm FedAvg provides no warranty that the selected

participants contribute with high-quality data to optimize the global model. Also, the

essential hyperparameters for the federated learning convergence, the number of local

updates, and the learning rate have fixed values in the FedAvg algorithm. Furthermore,

federated learning indirectly allows the aggregator server to infer participant data.

The thesis proposal presented a metaheuristic and a participant selection method for

the federated IDS scenario. Our proposal is not only concerned with using federated

learning to detect new attacks but also to overcome optimization issues intrinsic to feder-

ated learning. A FL-based IDS with fast convergence provides fast learning of new attack

patterns and encourages new participants to contribute.

This thesis has explored and innovated on various aspects of federated learning and

IDS, culminating in proposing a novel participant selection method and the FedSA meta-

heuristic. The challenges and statistical complexities inherent in federated learning envi-

ronments have been addressed with efficacy, even in the presence of malicious participants.

Our participant selection method leverages a variant of information gain for scor-

ing participants and employs an epsilon-greedy strategy for the selection process. We

introduced a participant blocker mechanism to prevent over-selected participants from

dominating the learning process and compromising the system’s resilience. In tandem

with the adoption of a global momentum term to facilitate accelerated convergence, these

innovations significantly improved the overall performance of our federated learning sys-
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tem. Our proposal evaluation underscored the efficacy of our approach across a diverse

range of scenarios, including scenarios with malicious participants. Despite the presence of

adversarial actors, constituting 20% and 60% of the participant pool in distinct scenarios,

our method successfully attained an f1-score exceeding 80% and an accuracy of 90% on the

test dataset, thereby highlighting its robustness. We extended our assessment to scenarios

devoid of malicious participants and juxtaposed our methodology against contemporary

aggregation algorithms and participant selection techniques. Here, our strategy excelled,

registering an impressive accuracy of 92% and an F1-Score of 82%, surpassing baseline

performances.

The FedSA we propose streamlines the federated learning workflow, enabling dy-

namic hyperparameter selection and accelerating the convergence of the global model. It

eliminates the necessity for time-consuming fine-tuning, as it adaptively searches for op-

timal hyperparameters during training. The results underscored the efficiency of FedSA

in optimizing the training process, achieving an approximate accuracy of 97% with the

CICIDS2017 dataset. By contrast, the baseline FedAVG required nearly double the ag-

gregation rounds to arrive at the same outcome. Furthermore, the evidence revealed that

despite selecting a smaller fraction of participants for training, the FedSA method was

able to deliver 96% accuracy, significantly outstanding the baseline. Specifically, with

FedSA selecting only 27% of participants, it reached 96% accuracy, while FedAvg, even

when engaging 50% of participants, required more aggregation rounds to achieve the same

accuracy. Thus, our proposed solution reached peak accuracy in a few aggregation rounds,

providing a 50% speed boost compared to the traditional approach.

Furthermore, the vulnerability review presented herein contributes to understanding

the systemic frailties to which such systems could be exposed. We can design more

secure and efficient federated learning systems by addressing these vulnerabilities. In our

review of vulnerabilities in FL, we classified attacks into two broad categories: Model

Performance Attacks and Data Privacy Attacks. Each attack category was analyzed, and

potential solutions were suggested to mitigate these vulnerabilities. We also highlight

various research works that aim to address these security challenges. Then, we assess

the strengths and weaknesses of the approaches, providing a robust understanding of the

current state of security in FL and opening avenues for future research.

In conclusion, our exploration of federated learning and intrusion detection has yielded

effective, robust solutions. These solutions open the path to more secure and efficient fed-

erated learning systems by overcoming statistical challenges and optimizing the learning
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process. Future research will consider enhancing privacy-preserving measures. As delin-

eated in Chapter 4, the potential for information leakage from local model parameters

exists, and the aggregation server may adopt the role of an honest but curious entity.

This will involve exploring techniques such as homomorphic encryption and parameter

masking strategies and tailoring the neighbourhood structure to participants with similar

model parameters.



References

[1] PETROLO, R.; LOSCRI, V.; MITTON, N. Towards a smart city based on cloud of
things, a survey on the smart city vision and paradigms. Transactions on emerging
telecommunications technologies, Wiley Online Library, v. 28, n. 1, p. e2931, 2017.

[2] LIM, W. Y. B.; LUONG, N. C.; HOANG, D. T.; JIAO, Y.; LIANG, Y. C.; YANG, Q.;
NIYATO, D.; MIAO, C. Federated learning in mobile edge networks: A comprehensive
survey. IEEE Communications Surveys Tutorials, IEEE, 2020.

[3] ALDWEESH, A.; DERHAB, A.; EMAM, A. Z. Deep learning approaches for
anomaly-based intrusion detection systems: A survey, taxonomy, and open issues.
Knowledge-Based Systems, v. 189, p. 105124, 2020. ISSN 0950-7051. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S0950705119304897>.

[4] LOPEZ, M. A.; MATTOS, D. M.; DUARTE, O. C. M.; PUJOLLE, G. Toward a
monitoring and threat detection system based on stream processing as a virtual network
function for big data. Concurrency and Computation: Practice and Experience, Wiley
Online Library, v. 31, n. 20, p. e5344, 2019.

[5] SANZ, I. J.; MATTOS, D. M. F.; DUARTE, O. C. M. B. Sfcperf: An automatic
performance evaluation framework for service function chaining. In: NOMS 2018 -
2018 IEEE/IFIP Network Operations and Management Symposium. [S.l.: s.n.], 2018.
p. 1–9.

[6] LIU, H.; LANG, B. Machine learning and deep learning methods for intrusion detec-
tion systems: A survey. applied sciences, Multidisciplinary Digital Publishing Institute,
v. 9, n. 20, p. 4396, 2019.

[7] de Souza, L. A. C.; Antonio F. Rebello, G.; Camilo, G. F.; Guimarães, L. C. B.;
Duarte, O. C. M. B. Dfedforest: Decentralized federated forest. In: 2020 IEEE Inter-
national Conference on Blockchain (Blockchain). [S.l.: s.n.], 2020. p. 90–97.

[8] Silva, J. V. V.; Lopez, M. A.; Mattos, D. M. F. Attackers are not stealthy: Statistical
analysis of the well-known and infamous kdd network security dataset. In: 2020 4th
Conference on Cloud and Internet of Things (CIoT). [S.l.: s.n.], 2020. p. 1–8.

[9] YANG, Q.; LIU, Y.; CHEN, T.; TONG, Y. Federated machine learning: Concept and
applications. ACM Transactions on Intelligent Systems and Technology, v. 10, n. 2, p.
1–19, 2019. ISSN 21576912.

[10] Brendan McMahan, H.; MOORE, E.; RAMAGE, D.; HAMPSON, S.; Agüera y Ar-
cas, B. Communication-efficient learning of deep networks from decentralized data. In:
Proceedings of the 20th International Conference on Artificial Intelligence and Statis-
tics, AISTATS 2017. [S.l.: s.n.], 2017. v. 54.



References 99

[11] PREUVENEERS, D.; RIMMER, V.; TSINGENOPOULOS, I.; SPOOREN, J.;
JOOSEN, W.; ILIE-ZUDOR, E. Chained anomaly detection models for federated learn-
ing: An intrusion detection case study. Applied Sciences, Multidisciplinary Digital Pub-
lishing Institute, v. 8, n. 12, p. 2663, 2018.

[12] Nguyen, T. D.; Marchal, S.; Miettinen, M.; Fereidooni, H.; Asokan, N.; Sadeghi,
A. DÏot: A federated self-learning anomaly detection system for iot. In: 2019 IEEE
39th International Conference on Distributed Computing Systems (ICDCS). [S.l.: s.n.],
2019. p. 756–767.

[13] RAHMAN, S. A.; TOUT, H.; TALHI, C.; MOURAD, A. Internet of things intrusion
detection: Centralized, on-device, or federated learning? IEEE Network, v. 34, n. 6, p.
310–317, 2020.

[14] CHEN, Z.; LV, N.; LIU, P.; FANG, Y.; CHEN, K.; PAN, W. Intrusion detection
for wireless edge networks based on federated learning. IEEE Access, v. 8, p. 217463–
217472, 2020.

[15] WANG, L.; WANG, W.; LI, B. Cmfl: Mitigating communication overhead for feder-
ated learning. In: 2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS). [S.l.: s.n.], 2019. p. 954–964.

[16] NETO, H. N. C.; DUSPARIC, I.; MATTOS, D. M. F.; FERNANDES, N. C. Fedsa:
Accelerating intrusion detection in collaborative environments with federated simulated
annealing. In: Proceedings of the 2022 IEEE Conference on Network Softwarization
(NetSoft). [S.l.: s.n.], 2022. p. 1–5.

[17] NETO, H. N. C.; MATTOS, D. M.; FERNANDES, N. C. Fedsa: Arrefecimento sim-
ulado federado para a aceleração da detecção de intrusão em ambientes colaborativos.
In: SBC. Anais do XXXIX Simpósio Brasileiro de Redes de Computadores e Sistemas
Distribuídos. [S.l.], 2021. p. 280–293.

[18] NETO, H. N. C.; FERNANDES, N. C.; MATTOS, D. M. F. Fedsbs: Seleção de
participantes baseado em pontuação para aprendizado federado no cenário de detecção
de intrusão. XXIII Simpósio Brasileiro de Segurança da Informação e de Sistemas
Computacionais-SBSeg, 2023.

[19] NETO, H. N. C.; HRIBAR, J.; DUSPARIC, I.; MATTOS, D. M. F.; FERNAN-
DES, N. C. A survey on securing federated learning: Analysis of applications, attacks,
challenges, and trends. IEEE Access, v. 11, p. 41928–41953, 2023.

[20] WANG, S.; TUOR, T.; SALONIDIS, T.; LEUNG, K. K.; MAKAYA, C.; HE, T.;
CHAN, K. Adaptive Federated Learning in Resource Constrained Edge Computing
Systems. IEEE Journal on Selected Areas in Communications, v. 37, n. 6, p. 1205–
1221, 2019. ISSN 15580008.

[21] KIM, G.; KIM, J.; HAN, B. Communication-efficient federated learning with accel-
eration of global momentum. arXiv preprint arXiv:2201.03172, 2022.

[22] LI, K.; ZHOU, H.; TU, Z.; WANG, W.; ZHANG, H. Distributed network intrusion
detection system in satellite-terrestrial integrated networks using federated learning.
IEEE Access, v. 8, p. 214852–214865, 2020.



References 100

[23] ZHAO, R.; YIN, Y.; SHI, Y.; XUE, Z. Intelligent intrusion detec-
tion based on federated learning aided long short-term memory. Physical
Communication, v. 42, p. 101157, 2020. ISSN 1874-4907. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S1874490720302342>.

[24] MOTHUKURI, V.; KHARE, P.; PARIZI, R. M.; POURIYEH, S.; DEHGHAN-
TANHA, A.; SRIVASTAVA, G. Federated learning-based anomaly detection for iot
security attacks. IEEE Internet of Things Journal, p. 1–1, 2021.

[25] REY, V.; SáNCHEZ, P. M. S.; CELDRáN, A. H.; BOVET, G.; JAGGI, M. Federated
Learning for Malware Detection in IoT Devices. 2021.

[26] NGUYEN, L. T.; KIM, J.; SHIM, B. Gradual federated learning with simulated
annealing. IEEE Transactions on Signal Processing, v. 69, p. 6299–6313, 2021.

[27] SMITH, V.; CHIANG, C.-K.; SANJABI, M.; TALWALKAR, A. S. Federated multi-
task learning. In: Advances in Neural Information Processing Systems. [S.l.: s.n.], 2017.
p. 4424–4434.

[28] CORINZIA, L.; BUHMANN, J. M. Variational federated multi-task learning. arXiv
preprint arXiv:1906.06268, 2019.

[29] Chiu, T.; Shih, Y.; Pang, A.; Wang, C.; Weng, W.; Chou, C. Semi-supervised dis-
tributed learning with non-iid data for aiot service platform. IEEE Internet of Things
Journal, p. 1–1, 2020.

[30] HUANG, L.; YIN, Y.; FU, Z.; ZHANG, S.; DENG, H.; LIU, D. Loadaboost: Loss-
based adaboost federated machine learning with reduced computational complexity on
iid and non-iid intensive care data. Plos one, Public Library of Science San Francisco,
CA USA, v. 15, n. 4, p. e0230706, 2020.

[31] SONG, Z.; SUN, H.; YANG, H. H.; WANG, X.; ZHANG, Y.; QUEK, T. Q.
Reputation-based federated learning for secure wireless networks. IEEE Internet of
Things Journal, IEEE, v. 9, n. 2, p. 1212–1226, 2021.

[32] LAI, F.; ZHU, X.; MADHYASTHA, H. V.; CHOWDHURY, M. Oort: Efficient
federated learning via guided participant selection. In: 15th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 21). [S.l.: s.n.], 2021. p. 19–35.

[33] Nishio, T.; Yonetani, R. Client selection for federated learning with heterogeneous
resources in mobile edge. In: ICC 2019 - 2019 IEEE International Conference on
Communications (ICC). [S.l.: s.n.], 2019. p. 1–7.

[34] YOSHIDA, N.; NISHIO, T.; MORIKURA, M.; YAMAMOTO, K.; YONETANI, R.
Hybrid-fl for wireless networks: Cooperative learning mechanism using non-iid data.
In: IEEE. ICC 2020-2020 IEEE International Conference on Communications (ICC).
[S.l.], 2020. p. 1–7.

[35] NETO, H. N. C.; LOPEZ, M. A.; FERNANDES, N. C.; MATTOS, D. M. Minecap:
super incremental learning for detecting and blocking cryptocurrency mining on
software-defined networking. Annals of Telecommunications, Springer, p. 1–11, 2020.



References 101

[36] ALOM, M. Z.; TAHA, T. M.; YAKOPCIC, C.; WESTBERG, S.; SIDIKE, P.; NAS-
RIN, M. S.; HASAN, M.; ESSEN, B. C. V.; AWWAL, A. A. S.; ASARI, V. K. A
state-of-the-art survey on deep learning theory and architectures. Electronics, v. 8,
n. 3, 2019. ISSN 2079-9292.

[37] MEDEIROS, D. S. V.; NETO, H. N. C.; LOPEZ, M. A.; MAGALHÃES, L. C. S.;
FERNANDES, N. C.; VIEIRA, A. B.; SILVA, E. F.; MATTOS, D. M. F. A survey on
data analysis on large-scale wireless networks: online stream processing, trends, and
challenges. Journal of Internet Services and Applications, SpringerOpen, v. 11, n. 1, p.
1–48, 2020.

[38] LI, P.; LI, J.; HUANG, Z.; LI, T.; GAO, C.-Z.; YIU, S.-M.; CHEN, K. Multi-
key privacy-preserving deep learning in cloud computing. Future Generation Computer
Systems, v. 74, p. 76 – 85, 2017. ISSN 0167-739X.

[39] VERMA, P.; SOOD, S. K.; KALRA, S. Cloud-centric iot based student healthcare
monitoring framework. Journal of Ambient Intelligence and Humanized Computing,
Springer, v. 9, p. 1293–1309, 2018.

[40] BUTT, U. A.; MEHMOOD, M.; SHAH, S. B. H.; AMIN, R.; SHAUKAT, M. W.;
RAZA, S. M.; SUH, D. Y.; PIRAN, M. J. A review of machine learning algorithms for
cloud computing security. Electronics, MDPI, v. 9, n. 9, p. 1379, 2020.

[41] ARULANTHU, P.; PERUMAL, E. An intelligent iot with cloud centric medical
decision support system for chronic kidney disease prediction. International Journal of
Imaging Systems and Technology, Wiley Online Library, v. 30, n. 3, p. 815–827, 2020.

[42] Parlamento Europeu e Conselho da União Européia. Reg-
ulamento (UE) 2016/679. 2016. Https://eur-lex.europa.eu/legal-
content/PT/TXT/PDF/?uri=CELEX:32016R0679&from=PT.

[43] OLIVEIRA, M. T. D.; REIS, L. H. A.; VERGINADIS, Y.; MATTOS, D. M. F.;
OLABARRIAGA, S. D. Smartaccess: Attribute-based access control system for medical
records based on smart contracts. IEEE Access, v. 10, p. 117836–117854, 2022.

[44] BRASIL. Lei nº 13.709, de 14 de agosto de 2018. Institui a Lei Geral de Proteção
de Dados Pessoais (LGPD). 2018.

[45] Gupta, A.; Jha, R. K. A survey of 5g network: Architecture and emerging technolo-
gies. IEEE Access, v. 3, p. 1206–1232, 2015.

[46] Chen, M.; Semiari, O.; Saad, W.; Liu, X.; Yin, C. Federated echo state learning for
minimizing breaks in presence in wireless virtual reality networks. IEEE Transactions
on Wireless Communications, v. 19, n. 1, p. 177–191, 2020.

[47] Samarakoon, S.; Bennis, M.; Saad, W.; Debbah, M. Federated learning for ultra-
reliable low-latency v2v communications. In: 2018 IEEE Global Communications Con-
ference (GLOBECOM). [S.l.: s.n.], 2018. p. 1–7.

[48] BRISIMI, T. S.; CHEN, R.; MELA, T.; OLSHEVSKY, A.; PASCHALIDIS, I. C.;
SHI, W. Federated learning of predictive models from federated electronic health
records. International Journal of Medical Informatics, v. 112, p. 59 – 67, 2018. ISSN
1386-5056.



References 102

[49] WU, Q.; CHEN, X.; ZHOU, Z.; ZHANG, J. Fedhome: Cloud-edge based personal-
ized federated learning for in-home health monitoring. IEEE Transactions on Mobile
Computing, v. 21, n. 8, p. 2818–2832, 2022.

[50] FREDRIKSON, M.; LANTZ, E.; JHA, S.; LIN, S.; PAGE, D.; RISTENPART, T.
Privacy in pharmacogenetics: An end-to-end case study of personalized warfarin dosing.
In: 23rd {USENIX} Security Symposium ({USENIX} Security 14). [S.l.: s.n.], 2014. p.
17–32.

[51] WANG, H.; SREENIVASAN, K.; RAJPUT, S.; VISHWAKARMA, H.; AGARWAL,
S.; SOHN, J.-y.; LEE, K.; PAPAILIOPOULOS, D. Attack of the tails: Yes, you really
can backdoor federated learning. In: LAROCHELLE, H.; RANZATO, M.; HADSELL,
R.; BALCAN, M.; LIN, H. (Ed.). Advances in Neural Information Processing Systems.
[S.l.]: Curran Associates, Inc., 2020. v. 33, p. 16070–16084.

[52] ASSEFI, M.; BEHRAVESH, E.; LIU, G.; TAFTI, A. P. Big data machine learning
using apache spark mllib. In: 2017 IEEE International Conference on Big Data (Big
Data). [S.l.: s.n.], 2017. p. 3492–3498.

[53] DEAN, J.; GHEMAWAT, S. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, ACM, v. 51, n. 1, p. 107–113, 2008.

[54] ZAHARIA, M.; XIN, R. S.; WENDELL, P.; DAS, T.; ARMBRUST, M.; DAVE, A.;
MENG, X.; ROSEN, J.; VENKATARAMAN, S.; FRANKLIN, M. J. Apache spark: a
unified engine for big data processing. Communications of the ACM, ACM, v. 59, n. 11,
p. 56–65, 2016.

[55] HO, Q.; CIPAR, J.; CUI, H.; LEE, S.; KIM, J. K.; GIBBONS, P. B.;
GIBSON, G. A.; GANGER, G.; XING, E. P. More effective distributed ml
via a stale synchronous parallel parameter server. In: Advances in Neural In-
formation Processing Systems 26. Curran Associates, Inc., 2013. p. 1223–1231.
Disponível em: <http://papers.nips.cc/paper/4894-more-effective-distributed-ml-via-
a-stale-synchronous-parallel-parameter-server.pdf>.

[56] BOTTOU, L. Large-scale machine learning with stochastic gradient descent. In: Pro-
ceedings of COMPSTAT’2010. Heidelberg: Physica-Verlag HD, 2010. p. 177–186. ISBN
978-3-7908-2604-3.

[57] HARD, A.; RAO, K.; MATHEWS, R.; RAMASWAMY, S.; BEAUFAYS, F.; AU-
GENSTEIN, S.; EICHNER, H.; KIDDON, C.; RAMAGE, D. Federated learning for
mobile keyboard prediction. arXiv preprint arXiv:1811.03604, 2018.

[58] Li, T.; Sahu, A. K.; Talwalkar, A.; Smith, V. Federated learning: Challenges, meth-
ods, and future directions. IEEE Signal Processing Magazine, v. 37, n. 3, p. 50–60,
2020.

[59] LI, W.; MILLETARÌ, F.; XU, D.; RIEKE, N.; HANCOX, J.; ZHU, W.; BAUST,
M.; CHENG, Y.; OURSELIN, S.; CARDOSO, M. J.; FENG, A. Privacy-preserving
federated brain tumour segmentation. In: Machine Learning in Medical Imaging. Cham:
Springer International Publishing, 2019. p. 133–141. ISBN 978-3-030-32692-0.



References 103

[60] VERMA, D.; JULIER, S.; CIRINCIONE, G. Federated ai for building ai solutions
across multiple agencies. arXiv preprint arXiv:1809.10036, 2018.

[61] Phong, L. T.; Aono, Y.; Hayashi, T.; Wang, L.; Moriai, S. Privacy-preserving deep
learning via additively homomorphic encryption. IEEE Transactions on Information
Forensics and Security, v. 13, n. 5, p. 1333–1345, 2018.

[62] BONAWITZ, K.; IVANOV, V.; KREUTER, B.; MARCEDONE, A.; MCMAHAN,
H. B.; PATEL, S.; RAMAGE, D.; SEGAL, A.; SETH, K. Practical secure aggregation
for privacy-preserving machine learning. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. New York, NY, USA: Associ-
ation for Computing Machinery, 2017. (CCS ’17), p. 1175–1191. ISBN 9781450349468.

[63] Wenliang Du; Atallah, M. J. Privacy-preserving cooperative statistical analysis. In:
Seventeenth Annual Computer Security Applications Conference. [S.l.: s.n.], 2001. p.
102–110.

[64] VAIDYA, J.; CLIFTON, C. Privacy preserving association rule mining in vertically
partitioned data. In: KDD ’02. New York, NY, USA: Association for Computing Ma-
chinery, 2002. p. 639–644. ISBN 158113567X.

[65] KARR, A. F.; LIN, X.; SANIL, A. P.; REITER, J. P. Privacy-preserving analysis of
vertically partitioned data using secure matrix products. Journal of Official Statistics,
v. 25, n. 1, p. 125, 2009.

[66] DU, W.; HAN, Y. S.; CHEN, S. Privacy-preserving multivariate statistical analysis:
Linear regression and classification. In: SIAM. Proceedings of the 2004 SIAM interna-
tional conference on data mining. [S.l.], 2004. p. 222–233.

[67] WAN, L.; NG, W. K.; HAN, S.; LEE, V. C. Privacy-preservation for gradient de-
scent methods. In: Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining. [S.l.: s.n.], 2007. p. 775–783.

[68] HARDY, S.; HENECKA, W.; IVEY-LAW, H.; NOCK, R.; PATRINI, G.; SMITH,
G.; THORNE, B. Private federated learning on vertically partitioned data via entity
resolution and additively homomorphic encryption. arXiv preprint arXiv:1711.10677,
2017.

[69] NOCK, R.; HARDY, S.; HENECKA, W.; IVEY-LAW, H.; PATRINI, G.; SMITH,
G.; THORNE, B. Entity resolution and federated learning get a federated resolution.
arXiv preprint arXiv:1803.04035, 2018.

[70] LIANG, G.; CHAWATHE, S. S. Privacy-preserving inter-database operations. In:
SPRINGER. International Conference on Intelligence and Security Informatics. [S.l.],
2004. p. 66–82.

[71] SCANNAPIECO, M.; FIGOTIN, I.; BERTINO, E.; ELMAGARMID, A. K. Privacy
preserving schema and data matching. In: Proceedings of the 2007 ACM SIGMOD
international conference on Management of data. [S.l.: s.n.], 2007. p. 653–664.



References 104

[72] GOLDREICH, O.; MICALI, S.; WIGDERSON, A. How to play any mental game,
or a completeness theorem for protocols with honest majority. In: . Providing
Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio
Micali. New York, NY, USA: Association for Computing Machinery, 2019. p. 307–328.
ISBN 9781450372664. Disponível em: <https://doi.org/10.1145/3335741.3335755>.

[73] Pan, S. J.; Yang, Q. A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering, v. 22, n. 10, p. 1345–1359, 2010.

[74] Wang, X.; Han, Y.; Leung, V. C. M.; Niyato, D.; Yan, X.; Chen, X. Convergence
of edge computing and deep learning: A comprehensive survey. IEEE Communications
Surveys Tutorials, v. 22, n. 2, p. 869–904, 2020.

[75] BOGETOFT, P.; CHRISTENSEN, D. L.; DAMG, I. Multiparty Computation Goes
Live. Review Literature And Arts Of The Americas, p. 1–13, 2009.

[76] VAIDYA, J.; CLIFTON, C.; KANTARCIOGLU, M.; PATTERSON, A. S. Privacy-
preserving decision trees over vertically partitioned data. ACM Trans. Knowl. Discov.
Data, Association for Computing Machinery, New York, NY, USA, v. 2, n. 3, out. 2008.
ISSN 1556-4681.

[77] DU, W.; ZHAN, Z. Building decision tree classifier on private data. Syracuse Uni-
versity - Electrical Engineering and Computer Science, 2002.

[78] VAIDYA, J.; CLIFTON, C. Privacy-preserving k-means clustering over vertically
partitioned data. In: Proceedings of the Ninth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. New York, NY, USA: Association for
Computing Machinery, 2003. (KDD ’03), p. 206–215. ISBN 1581137370. Disponível em:
<https://doi.org/10.1145/956750.956776>.

[79] VAIDYA, J.; CLIFTON, C. Privacy preserving naive bayes classifier for vertically
partitioned data. In: SIAM. Proceedings of the 2004 SIAM international conference on
data mining. [S.l.], 2004. p. 522–526.

[80] Zhang, J.; Chen, B.; Yu, S.; Deng, H. Pefl: A privacy-enhanced federated learn-
ing scheme for big data analytics. In: 2019 IEEE Global Communications Conference
(GLOBECOM). [S.l.: s.n.], 2019. p. 1–6.

[81] GORYCZKA, S.; XIONG, L. A comprehensive comparison of multiparty secure ad-
ditions with differential privacy. IEEE Transactions on Dependable and Secure Com-
puting, v. 14, n. 5, p. 463–477, 2017.

[82] LI, Y.; ZHOU, Y.; JOLFAEI, A.; YU, D.; XU, G.; ZHENG, X. Privacy-preserving
federated learning framework based on chained secure multiparty computing. IEEE
Internet of Things Journal, v. 8, n. 8, p. 6178–6186, 2021.

[83] BONAWITZ, K.; EICHNER, H.; GRIESKAMP, W.; HUBA, D.; INGERMAN, A.;
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