

UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE TELECOMUNICAÇÕES

DANIELA COELHO RODRIGUES DE SOUZA

Aplicação de Redes Neurais Artificiais para Estimação de Indicadores de Segurança Estática e Dinâmica de Sistemas Elétricos de Potência

NITERÓI 2022

UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE TELECOMUNICAÇÕES

DANIELA COELHO RODRIGUES DE SOUZA

Aplicação de Redes Neurais Artificiais para Estimação de Indicadores de Segurança Estática e Dinâmica de Sistemas Elétricos de Potência

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Engenharia Elétrica e de Telecomunicações da Universidade Federal Fluminense, como requisito parcial para obtenção do título de Mestre em Engenharia Elétrica e de Telecomunicações. Área de concentração: Sistemas de Energia Elétrica

Orientador: Vitor Hugo Ferreira

> NITERÓI 2022

Ficha catalográfica automática - SDC/BEE Gerada com informações fornecidas pelo autor

Bibliotecário responsável: Debora do Nascimento - CRB7/6368

DANIELA COELHO RODRIGUES DE SOUZA

Aplicação de Redes Neurais Artificiais para Estimação de Indicadores de Segurança Estática e Dinâmica de Sistemas Elétricos de Potência

> Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Engenharia Elétrica e de Telecomunicações da Universidade Federal Fluminense, como requisito parcial para obtenção do título de Mestre em Engenharia Elétrica e de Telecomunicações. Área de concentração: Sistemas de Energia Elétrica

BANCA EXAMINADORA

Assinado de forma digital por VITOR HUGO FERREIRA vhferreira@id.uff.br:01277679673 Dados: 2022.02.09 20:00:38 -03'00'

Prof. Dr. Vitor Hugo Ferreira - Orientador Universidade Federal Fluminense - UFF

have Bulit fit

Prof. Dr. Marcio Zamboti Fortes Universidade Federal Fluminense - UFF

Bruns & Dies

Prof. Dr Bruno Henriques Dias Universidade Federal de Juiz de Fora – UFJF

Mu dfl R. for

Dr. Carlos Alberto da Silva Neto Operadora Nacional do Sistema Elétrico - ONS

Niterói Fevereiro de 2022

Dedico esse trabalho ao meu pai (in memoriam), sem o qual nada disso seria possível de ser alcançado, e que mesmo com toda a sua simplicidade, sempre me amou, incentivou e cuidou.

Agradecimentos

Primeiramente agradeço a Deus, pelo seu sublime amor por mim e pela força dada nos dias maus. Por sempre iluminar os meus caminhos e me abençoar em minhas decisões.

Ao meu pai Wilson (*in memorim*) por todo o seu incentivo e amor, me apoiando e incentivando a sempre continuar a estudar. E principalmente, por todo o seu carinho pela UFF o que colaborou ainda mais para a minha felicidade.

À minha avó Inésia (*in memorim*) por toda a sua benção, e que embora nunca tivesse tido a oportunidade de ter estudado, sempre se sentava a meu lado me incentivando nos estudos.

À minha mãe Denise, as minhas tias, Odiléa e Maria das Graças por todo apoio nessa fase desafiadora e difícil que foi, sempre me incentivando e apoiando para vencer as adversidades da vida.

Ao meu futuro esposo Douglas, que a UFF me deu a oportunidade de conhecer e se tornou uma peça fundamental em minha trajetória de vida.

Aos meus amigos Rodrigo Godim e Vanessa Cordeiro pelo apoio e companheirismo.

Ao meu Orientador Vitor Hugo Ferreira, que eu tenho a maior admiração pela história de vida, pela pessoa e professor humano que é.

Ao meu amigo e mentor Carlos Neto, por toda a sua parceria nos últimos anos, um profissional em que eu me espelho.

Ao professor Marcio Zamboti, por todos ensinamentos e conversas ao longo de minha trajetória pela UFF.

E por último, agradeço a UFF e a PPGEET, pela oportunidade e pelo sonho realizado.

Resumo

Atualmente, com o maior receio de ocorrências de blecautes em função do aumento da dependência da energia elétrica pela sociedade, as atividades de análise de segurança se tornaram cada vez mais essenciais para operação e o planejamento dos Sistemas Elétricos de Potência. À vista disso, os estudos referentes a análise de segurança têm sido amplamente debatidos na literatura. Com o avanço do poder computacional cada vez mais autores propõe a utilização de técnicas de inteligência artificial para a predição de indicadores relacionados à segurança de sistemas elétricos de potência. Logo, o presente trabalho possui como objetivo o desenvolvimento de um modelo utilizando técnicas de inteligência artificial, mais precisamente as Redes Neurais Artificiais, que irão atuar em conjunto com software de análise de sistema de potência para a predição de indicadores de confiabilidade dos sistemas elétricos de potência. Dois algoritmos de treinamento serão apresentados e comparados com o objetivo de inferir qual é a melhor forma de desenvolvimento dos modelos. Além disso, será analisado se a técnica de validação cruzada se torna uma boa estratégia para o desenvolvimento ou se a utilização de técnicas que garantem o controle de complexidade de forma intrínseca desponta como uma melhor forma de modelagem. Por fim, os resultados alcançados serão avaliados por técnicas apropriadas e descritas na literatura.

Palavras-chaves: análise de segurança de sistema, operação de sistemas elétricos, organon, aprendizado de máquinas, redes neurais artificiais, treinamento bayesiano, levenberg-marquardt.

Abstract

Nowadays, the greatest fear of blackout events due to the increase of the society's dependence on electrical energy, security analysis activities have become increasingly essential for the operation and the planning of electrical grids. Thus, studies related to safety analysis have been widely debated in the literature. The advancement of computational power, more authors propose the use of artificial intelligence techniques for the prediction of indicators related to the safety of electrical power systems. Therefore, the present work aim to develop a model using artificial intelligence techniques, more precisely Artificial Neural Networks, which will work together with power system analysis software for the prediction of reliability indicators of electrical power systems potency. Two training algorithms will be presented and compared in order to infer which is the best way to develop the models. Beside of this, will be check if the cross-validation technique becomes a good strategy for the development, or if the use of techniques that guarantee the control of complexity in an intrinsic way emerges as a better way of modeling. Finally, the results achieved will be evaluated by appropriate techniques described in the literature.

Keywords: power system security, electrical system operation, organon, machine learning, artificial neural networks, bayesian training, levenberg-marquardt.

Lista de Figuras

FIGURA 1 - TIPOS DE ESTABILIDADE DOS SISTEMAS ELÉTRICOS DE POTÊNCIA [34]18
FIGURA 2 - PROJEÇÃO DA REGIÃO DE SEGURANÇA [34]22
FIGURA 3 - NOMOGRAMA E SUAS DEFINIÇÕES [41]
FIGURA 4 - REDE NEURAL ARTIFICIAL DO TIPO MULTI LAYER PERCEPTRON [46]25
FIGURA 5 - ESTRUTURA DE UM NEURÔNIO [47]
FIGURA 6 - GRÁFICO DA TANGENTE HIPERBÓLICA [47]
FIGURA 7 - GRÁFICO DA FUNÇÃO LOGÍSTICA [47]
FIGURA 8 - MACROFLUXO DO MODELO DESENVOLVIDO
Figura 9 - Evolução do R^2 durante a etapa de treinamento (STBLDX - Treinamento
BAYESIANO)
FIGURA 10 - ANÁLISE DO ÍNDICE DE ESTABILIDADE (TREINAMENTO BAYESIANO)
Figura 11 - Evolução do R^2 durante a etapa de treinamento (STBLDX -
TREINAMENTO PROPOSTO POR LEVENBERG-MARQUARDT)
Figura 12 - Análise do Índice de Estabilidade com a utilização de K-fold
(TREINAMENTO DE LEVENBERG-MARQUARTD)
Figura 13 - Evolução do R^2 durante a etapa de treinamento (VVIO - Treinamento
BAYESIANO)
FIGURA 14 - ANÁLISE DO ÍNDICE DE VIOLAÇÃO DE TENSÃO (TREINAMENTO BAYESIANO) 50
Figura 15 - Evolução do R^2 durante a etapa de treinamento (VVIO - Treinamento
PROPOSTO POR LEVENBERG-MARQUARDT)
Figura 16 - Análise do Índice de Violação de Tensão com a utilização de K-fold
(TREINAMENTO DE LEVENBERG-MARQUARDT)
Figura 17 - Evolução do R^2 durante a etapa de treinamento (TVIO - Treinamento
BAYESIANO)
FIGURA 18 - ANÁLISE DO ÍNDICE DE VIOLAÇÃO DE CARREGAMENTO (TREINAMENTO
BAYESIANO)
Figura 19 - Evolução do R^2 durante a etapa de treinamento (TVIO - Treinamento
PROPOSTO POR LEVENBERG-MARQUARDT)
FIGURA 20 - ANÁLISE DO ÍNDICE DE VIOLAÇÃO DE CARREGAMENTO COM A UTILIZAÇÃO DE K-
FOLD (TREINAMENTO DE LEVENBERG-MARQUARDT)

Lista de Tabelas

Tabela 1 - Tabela Resumo dos Resultados com o Treinamento Bayesiano - Teste
Tabela 2 - Tabela Resumo dos Resultados com o Algoritmo de Treinamento de
Levenberg-Marquardt - Teste
Tabela 3 - Resumo do Tempo de Previsão
Tabela 4 - Resultado do Modelo utilizando o algoritmo de treinamento
BAYESIANO – TESTE
Fabela 5 - Resultado do Modelo utilizando o algoritmo de treinamento proposto
POR Levenberg-Marquardt - Teste

Lista de Abreviaturas e Siglas

ANAREDE	Software de Análise de Redes Elétricas
ANATEM	Software de Análise de Transitórios Eletromecânicos
ARD	Automatic Relevance Determination
MAPE	Mean Absolut Percentage Error
MLP	MultiLayer Perceptron
MPO	Manual de Procedimento da Operação
ONS	Operador Nacional do Sistema Elétrico
RNA	Rede Neural Artificial
SEP	Sistema Elétrico de Potência
SIN	Sistema Interligado Nacional
STBLDX	Índice de Estabilidade
TRAINBR	Treinamento Bayesiano
TRAINLM	Algoritmo de Treinamento Proposto por Levenberg-Marquardt
TVIO	Índice de Violação de Carregamento
VVIO	Índice de Violação de Tensão

Sumário

Capítul	lo 1 - Introdução	13
1.1	Motivações e Objetivos	14
1.2	Produções Científicas Oriundas do Trabalho	15
1.3	Estrutura do Documento	16
Capítul	lo 2 - Fundamentação Teórica	17
2.1	Análise de Segurança de Sistemas Elétrico de Potência	18
2.1.1	l Organon	19
	2.1.1.1 Região de Segurança	21
2.2	Rede Neural Artificial	23
2.2.1	Treinamento das Redes Neurais Artificiais	31
	2.2.1.1 Treinamento Bayesiano	31
	2.2.1.2 Treinamento proposto por <i>Levenberg-Marquardt</i>	34
2.2.2	2 Validação Cruzada	35
Capítul	lo 3 - Metodologia	37
3.1	Dados Utilizados	37
3.2	Programa Desenvolvido	38
3.3	Critérios de Avaliação dos Resultados	41
3.3.1	Erro	41
3.3.2	2 Erro Absoluto Médio	41
3.3.3	3 Coeficiente de Correlação de Pearson	42
3.3.4	4 Coeficiente de Determinação	42
Capítu	lo 4 - Resultados	44
4.1	Índice de Estabilidade (STBLDX)	44
4.1.1	Treinamento Bayesiano (STBLDX)	45
4.1.2	2 Algoritmo de Treinamento de Levenberg-Marquardt (STBLDX)	47
4.2	Índice de Violação de Tensão – VVIO	48
4.2.1	Treinamento Bayesiano (VVIO)	49

4.2.2	Algoritmo de Treinamento de Levenberg-Marquardt (VVIO)	. 50
4.3	Índice de Carregamento - TVIO	. 51
4.3.1	Treinamento Bayesiano (TVIO)	. 51
4.3.1	Algoritmo de Treinamento de Levenberg-Marquardt (TVIO)	. 53
4.4	Resumo	. 54
Capítulo	5 - Conclusão e Trabalhos Futuros	. 58
Bibliogra	afia	. 61
Anexo		. 68

Capítulo 1 - Introdução

A operação contínua e estável de sistemas elétricos de potência (SEP) é um grande desafio e está sujeita à ocorrência de eventos com consequências graves para os consumidores e a sociedade em geral. Logo, com a maior dependência da sociedade pela energia elétrica, e em função disso o maior receio de ocorrência de blecautes como os de 2003 nos Estados Unidos e Canadá, e 2009 e 2018 que ocorreram no Brasil, se tornou fundamental o desenvolvimento de ferramentas, rápidas e confiáveis para a análise de segurança dos Sistemas Elétricos de Potência [1]. Dessa forma, a avaliação de segurança dos sistemas elétricos de potência avança como uma das principais atividades realizadas durante o planejamento e a operação desses sistemas [2]. É válido destacar que, o desenvolvimento dessa atividade não é trivial, dada a frequente mudança dos pontos de operação devido a falhas, mudanças topológicas e nas condições de carga [3].

A análise de segurança pode ser definida como o conjunto de métodos e estudos realizados com o objetivo de determinar, com base em critérios previamente definidos, o estado operativo da rede, ou seja, se ela está segura ou não, sendo desenvolvido através desses resultados instruções operativas a serem usadas na operação em tempo real, como descrito nos Manuais de Procedimentos da Operação (MPO) do Operador Nacional do Sistema Elétrico (ONS) [4].

Logo, pode-se entender a avaliação de segurança dos SEPs como um processo de análise dos impactos da ocorrência de determinadas contingências no sistema, sendo observado se existem violações em relação a tensão, ao carregamento e se existe perda de estabilidade. Os principais benefícios dessa atividade consistem no aumento da confiabilidade e a melhor utilização dos recursos eletroenergéticos do sistema [5] e [6].

Torna-se válido destacar que, em geral, duas avaliações são realizadas durante os estudos de análise de sistema de potência, que são: a avaliação estática e a avaliação dinâmica, sendo parte da avaliação dinâmica a análise de segurança transitória [7].

Em decorrência da importância do tema para a sociedade, diversas pesquisas têm sido desenvolvidas durante as últimas décadas, como a revisão bibliográfica sobre análise de segurança, estática e dinâmica, de sistemas elétricos de potência realizada por [8], a pesquisa para a criação de uma ferramenta unificada para análise de segurança em regime permanente e dinâmico proposto por [9] e o estudo desenvolvido por [10] que sugere a criação de um indicador de análise de segurança calculado através dos estudos de fluxo de

potência e curto-circuito. Além disso, diversos trabalhos podem ser encontrados na literatura como métodos de domínio no tempo, ajuste de curva e critério das áreas iguais, para a classificação da estabilidade do sistema [11]–[13].

Destaca-se que a operação segura, confiável e ininterrupta dos sistemas elétricos de potência é indispensável nos dias atuais [14]. Todavia, as diversas mudanças impostas aos SEPs, como a inserção de fontes renováveis no sistema, tem acarretado um maior desafio para a operação desses sistemas [15] e [16]. Dessa forma, em função do aumento da importância da operação segura e confiável dos SEPs, inúmeras pesquisas foram desenvolvidas nos últimos anos com o objetivo de estimar variáveis relacionadas a segurança. Logo, diversos métodos de previsão podem ser encontrados na literatura variando entre técnicas clássicas de análise de sinais até métodos de aprendizado de máquinas [17].

Recentemente, com o avanço do poder computacional, diversas pesquisas têm sido desenvolvidas utilizando técnicas de aprendizado de máquina, como as Redes Neurais Artificiais (RNA) [18]–[25]. Ressalta-se que em função dos inúmeros tipos de estruturas das RNAs, diversos trabalhos podem ser encontrados na literatura. De forma geral, as redes do tipo *feedforward* de múltiplas camadas são amplamente utilizadas na literatura [26]–[28]. Além desse tipo de estrutura, também podem ser encontrados trabalhos que utilizam redes neurais convolucionais [29] e as redes neurais de base radiais [30].

1.1 Motivações e Objetivos

Os estudos para avaliação de segurança dos SEPs são realizados utilizando *softwares* de simulação de sistemas elétricos de potência considerando inúmeras condições operativas e cenários de contingências, tendo como objetivo identificar as condições operativas que apresentem riscos para a operação continua e segura do SEP em análise, bem como propor formas mitigar esses riscos. Em geral, esses estudos necessitam de um volume significativo de tempo para simulação e análise dos resultados.

Diante da miríade de possibilidades existentes, é indicado o desenvolvimento de ferramentas que sejam capazes de extrair conhecimento das diversas simulações realizadas e que seriam descartadas ao final do processo, possibilitando rápida resposta e indicações de quais cenários devem apresentar estudos mais detalhados.

Isto posto, o presente trabalho tem como objetivo a criação de um modelo utilizando técnicas de aprendizado de máquina (do inglês, *machine learning*), mais especificamente as

RNAs, com o intuito de extrair conhecimento das diversas simulações, realizando uma pré análise e apresentando ao usuário indicadores que o apoiam sobre o estado operativo do SEP em análise.

Para a construção do modelo proposto, serão utilizados os cenários simulados pelo *software* Organon, sendo esses dados considerados para o treinamento dos modelos e estimação dos indicadores propostos, dando origem a um sistema de inferência que permite a projeção de cada indicador sem a necessidade de uso do simulador na operação em tempo real.

Torna-se válido destacar que a ferramenta desenvolvida no presente trabalho poderá ser utilizada nas atividades relativas à operação do tempo real, isto é, dentro dos inúmeros centros de operação. Além disso, ressalta-se que essa ferramenta pode ser acoplada a qualquer *software* de análise de segurança, não sendo estritamente dependente de somente um tipo de *software*, sendo necessária somente a disponibilização dos resultados das simulações realizadas para treinamento *offline* dos modelos.

Destaca-se que quando comparado ao tempo de simulação dos *softwares* de análise de segurança, a ferramenta desenvolvida será capaz de apresentar resultados de forma mais ágil, possibilitando o uso dos simuladores somente para análises mais complexas e detalhadas a respeito de determinados pontos de operação apontados como inseguros pelo modelo desenvolvido.

1.2 Produções Científicas Oriundas do Trabalho

 De Souza, D., Ferreira, V., Neto, C., "Aplicação de Redes Neurais Artificiais para Estimação de Indicadores de Segurança Estática e Dinâmica de Sistemas Elétricos de Potência", SBSE 2022, UFSM.

Atualmente, com o maior receio de ocorrências de blecautes em função do aumento da dependência da energia elétrica pela sociedade, o desenvolvimento de estudos relacionados à segurança dos sistemas elétricos de potência desponta como uma das principais atividades a serem realizadas no âmbito do planejamento e da operação dos sistemas elétricos. Em função disso, este assunto tem sido amplamente debatido na literatura e com o avanço do poder computacional, cada vez mais autores propõem a utilização de técnicas de inteligência artificial para a predição de indicadores relacionados à segurança dos Sistemas Elétricos de Potência. Neste contexto, este artigo apresenta o desenvolvimento de um modelo, utilizando redes neurais artificiais, que irá atuar em conjunto com softwares de análise de sistema de potência para a previsão de indicadores de segurança estática e dinâmica de sistemas elétricos de potência.

1.3 Estrutura do Documento

No capítulo dois será apresentada a fundamentação teórica sobre os métodos aplicados nessa dissertação. Nesse capítulo será vista a teoria sobre segurança de sistemas de potência e sobre o *software* Organon, sendo abordado a respeito das regiões de segurança, sua estruturação e sua interpretação. Por fim, serão apresentadas as principais características das redes neurais artificiais e o seu processo de treinamento.

O capítulo três, apresenta informações inerentes à estruturação do programa desenvolvido, sobre os dados utilizados para o desenvolvimento do modelo e ao final serão abordadas as técnicas estatísticas utilizadas para a avaliação dos resultados alcançados.

Em seguida, no capítulo quatro, serão detalhados os resultados alcançados durante a aplicação do modelo proposto nessa dissertação. Destaca-se que serão avaliadas três variáveis, que são: Índice de Estabilidade (STBLDX), Índice de Violação de Tensão (VVIO) e Índice de Violação de Carregamento (TVIO), sendo realizado avaliações a respeito dos resultados alcançados.

Finalizando, no capítulo cinco são apresentadas as conclusões sobre o trabalho realizado, destacando os conceitos importantes para o entendimento do leitor, e a indicação de trabalhos futuros.

Capítulo 2 - Fundamentação Teórica

Neste capítulo será apresentada a formulação teórica dos métodos utilizados no presente trabalho. Dessa forma, serão revisados os principais conceitos sobre análise de segurança de sistemas de potência, um breve descritivo sobre o *software* Organon e suas regiões de segurança, programa utilizado pelo ONS com o objetivo de realizar estudos de análise estática e dinâmica de um referido sistema elétrico de potência. Por fim, será apresentado a respeito das redes neurais artificiais realizando uma explicação sobre esse tipo de modelo, suas formas de treinamento e a técnica de validação cruzada utilizada para o desenvolvimento do modelo.

Os SEPs possuem como objetivo apresentar um comportamento adequado diante das diversas variações verificadas ao longo do tempo, para que seja possível o atendimento de todas as cargas de forma confiável e ininterrupta. Logo, com o objetivo da avaliação da segurança sistêmica são desenvolvidos diversos estudos, sejam eles de regime permanente ou dinâmico, sendo em geral esses estudos denominados como os "estudos de estabilidade". Para as referências [31] e [32] a estabilidade do SEP pode ser definida como a capacidade que o sistema tem de se manter em equilíbrio frente as diversas perturbações sofridas no decorrer de um determinado período, podendo sair de um ponto de equilíbrio ao outro após esses eventos.

Frente as inúmeras perturbações que podem ocorrer ao longo do tempo, os estudos de estabilidade devem ser abrangentes de forma a cobrir essa grande variedade de perturbações. Segundo [33] os estudos de estabilidade são divididos de acordo com suas características e objetivos, e em geral em três macro grupos, que são: estabilidade angular de rotor, estabilidade de tensão e estabilidade de frequência, a Figura 1 apresenta os tipos de estudos de forma simplificada.

Figura 1 - Tipos de Estabilidade dos Sistemas Elétricos de Potência [34]

De forma geral, a estabilidade de tensão está relacionada a capacidade do sistema manter um perfil de tensão apropriado em todos os seus barramentos, tanto em condições normais quanto de distúrbios. Em relação a estabilidade de frequência, esse estudo se refere a capacidade do sistema em manter a frequência estável após um desequilíbrio entre carga e geração. Por fim, a estabilidade angular do rotor pode ser definida como o estudo que avalia a capacidade do SEP em manter suas unidades geradoras operando em sincronismo após a ocorrência de uma perturbação. Caso o leitor apresente o interesse da leitura mais aprofundada de cada um desses temas, as referências [31]–[34] podem auxiliar nesse objetivo.

2.1 Análise de Segurança de Sistemas Elétrico de Potência

Como supracitado, a análise de segurança pode ser definida como o conjunto de métodos e estudos realizados com o objetivo de determinar o estado operativo da rede em análise. Em geral, são realizados dois tipos de avaliações: a avaliação estática e a avaliação dinâmica, sendo parte da avaliação dinâmica a análise de segurança transitória [7].

A avaliação estática possui como objetivo determinar se um ponto de operação se encontra seguro ou não. Para isto, é verificado se o nível de tensão em todas as barras do determinado sistema encontra-se dentro do limite aceitável e se o fluxo das linhas de transmissão e transformadores encontram-se dentro de seus respectivos limites térmicos. Além disso, ressalta-se que a análise de contingência também pode ser realizada nessa avaliação [7].

A avaliação dinâmica visa determinar a capacidade do sistema de passar de um determinado ponto operativo a outro, após a ocorrência de uma perturbação. Diversos estudos têm sido desenvolvidos a respeito dessa avaliação, principalmente para auxiliar a operação em tempo real [35].

Por fim, a avaliação transitória destina-se a verificar o comportamento do sistema poucos instantes após o acontecimento da perturbação. Essa análise indica se a rede será capaz de eliminar a perturbação sem comprometer o seu bom funcionamento [7].

O ONS é o órgão responsável pela operação do sistema elétrico brasileiro. Essa instituição apresenta em seus documentos normativos os critérios de segurança a serem atendidos durante a operação em tempo real do Sistema Interligado Nacional (SIN) [36].

No Brasil, existem diversos *softwares* de análise de segurança de sistemas de potência, como o ANAREDE, o ANATEM e o Organon. O ANAREDE é um programa computacional de redes elétricas para o estudo de análise de sistema elétricos de potência em regime permanente [37]. O ANATEM é um programa computacional para análise de transitórios eletromecânicos, que faz a análise de sistemas elétricos de potência em regime dinâmico, ou seja, realiza estudos de análise de grandes perturbações no período de estabilidade dinâmica e transitória [38].

Nos centros de operação do ONS, o *software* Organon é responsável pela indicação sobre a estabilidade do sistema através de seus nomogramas, que serão descritos no item 2.1.1.1. No presente trabalho esse *software* foi utilizado como base para a construção do modelo proposto, ou seja, foram utilizados os dados extraídos dos estudos realizados por esse programa.

2.1.1 Organon

O programa Organon é um *software* para análise estática, dinâmica e avaliação de segurança de sistemas elétricos de potência, sendo adequado tanto para os estudos de planejamento (análise de regime permanente e contingências, bem como análises dinâmicas como os estudos de oscilações eletromecânicas) quanto para a operação em tempo real [39] quando integrado ao Sistema de Supervisão e Controle [34]. Destaca-se que no ambiente de operação em tempo real esse *software* é utilizado em conjunto com o sistema de supervisão

e controle, apresentando aos operadores informações a respeito do ponto de operação através de seus nomogramas [40].

O Organon foi concebido no sentido de aperfeiçoar as etapas de planejamento e operação em tempo real do sistema elétrico de potência em vários quesitos, uma vez que estudos podem ser executados com precisão e confiabilidade.

De forma geral, a avaliação de segurança calculada pelo Organon pode ser resumida como um processo de avaliação da condição operativa do SEP em um determinado ponto de operação e em sua vizinhança, sendo esse processo realizado de forma automatizada pelo *software* [34].

É de conhecimento geral que de forma básica os SEPs podem apresentar alguns tipos de restrições operativas, como [34]:

- Restrição de Carga sendo representada pelas injeções e/ou demanda de potência ativa e reativa pelo sistema;
- **Restrição de Operação** está relacionada aos limites operativos definidos para os SEPs, como por exemplo os limites de tensão e carregamento;
- **Restrição de Segurança** sendo esta restrição associada aos conjuntos de contingências na qual o sistema está sujeito a suportar.

Logo, a avaliação de segurança pode ser entendida como a simulação de um conjunto de contingências sendo verificado se houve violação de algumas das restrições que o sistema está sujeito.

O programa Organon possui funcionalidades que possibilitam o automatismo desses estudos. Um exemplo é a região de segurança que é construída a partir da simulação de diversas contingências em um ponto operativo e sua vizinhança. Essa vizinhança é explorada de forma automatizada, seguindo um conjunto de regras definidas pelo usuário. Usualmente são feitos redespachos de geração em grandes blocos de usinas explorando os principais troncos de transmissão do sistema.

Além do automatismo, a região de segurança tem outra grande vantagem que é a apresentação do resultado de forma gráfica e intuitiva. Os limites de segurança, além das indicações de violações de carregamento e de critério, são apresentados em ábacos com regiões e contornos seguindo um padrão de cores que indica cada limite e nível de segurança correspondente.

2.1.1.1 Região de Segurança

O conhecimento da região de segurança é de suma importância para otimizar o uso dos recursos disponíveis mantendo os níveis de segurança aceitáveis, tanto no ambiente de planejamento quanto na operação em tempo real. Essa região pode ser compreendida como a avaliação de um determinado ponto de operação, a partir da condição atualizada da rede, sendo observadas possíveis violações de limites e critérios operativos definidos nos procedimentos de rede do ONS [39] e [41].

Durante a análise da região de segurança é possível visualizar o comportamento do ponto de operação em relação a determinados limites tais como: limite de geração, limite de estabilidade de tensão, limite de convergência, limite térmico, limite de tensão, limite de estabilidade e limite de segurança.

Em decorrência do objetivo do presente trabalho, que consiste em estimar indicadores relacionados a segurança do SEP, torna-se válido destacar as definições do limite térmico, limite de tensão e limite de estabilidade, que se encontram relacionados as variáveis TVIO, VVIO e STBLDX, respectivamente, que serão estimadas neste trabalho.

O limite térmico possui como objetivo informar a respeito da violação de carregamento em algum equipamento ou linha de transmissão do sistema em análise. O limite de tensão visa apresentar o ponto máximo em que o ponto de operação poderá percorrer sem que exista a violação de tensão. Por fim, o limite de estabilidade indica a margem limite de variação do ponto de operação sem que exista violação dos critérios elétricos durante as simulações dinâmicas, sendo esses critérios expostos no submódulo 2.3 dos Procedimentos de Rede [42].

A região de segurança é apresentada ao usuário sob forma de um gráfico tridimensional, sendo os eixos desse gráfico os grupos de gerações utilizados durante a simulação (G1, G2 e G3). Destaca-se que os grupos de geração G1 e G2 são agrupamentos de usinas dentro da área de estudo, e o G3 é o agrupamento de usinas que podem estar ou não dentro do sistema estudado sendo ele responsável pelo balanço energético da área em análise. Destaca-se que G3 deverá ter a capacidade de fechar o balanço das gerações dos grupos G1 e G2. Além do conhecimento dos grupos geradores (G1, G2 e G3), para a construção da região de segurança deverá ser pré-definida uma lista de contingências e o número de direções que o ponto de operação poderá percorrer, sendo a região construída

explorando-se radialmente diferentes direções a partir de um ponto de operação inicial através do redespacho de dos grupos de geração [34].

Realizada a descrição sobre as regiões de segurança, torna-se válido apresentar a respeito dos nomogramas, que são gráficos bidimensionais da projeção da região de segurança em dois de seus eixos, como apresentado na Figura 2, dessa forma, torna-se claro que uma região de segurança irá apresentar três nomogramas após a sua projeção na combinação de dois de seus eixos. Além disso, destaca-se que o limite das regiões de segurança é definido como a interseção dos limites operativos frente a todas as contingências analisadas e que é possível realizar o cálculo de dois tipos de regiões de segurança, que são, região de segurança estática e região de segurança dinâmica.

Figura 2 - Projeção da Região de Segurança [34]

A Figura 3 expõe um nomograma, bem como os possíveis limites que podem ser analisados durante a interpretação do gráfico.

Figura 3 - Nomograma e suas definições [41]

A visualização de uma região de segurança através dos nomogramas é uma fermenta fundamental durante a operação em tempo real dentro dos centros de operação do ONS, uma vez que apresenta de forma intuitiva aos operadores, através de escalas de cores, informações claras sobre o SEP.

2.2 Rede Neural Artificial

O cérebro biológico pode ser definido como um computador de alta performance, onde diversas atividades podem ser realizadas de forma paralela, através de um processo de aprendizado cognitivo. Dessa forma, o desenvolvimento de modelos que sejam capazes de emular a capacidade da mente humana se torna uma tarefa complexa, sendo isto alvo de pesquisas por um longo período. Em função disso, surgem as redes neurais artificiais que são modelos matemáticos capazes de adquirir conhecimento através de um processo de treinamento sendo aplicados a uma vasta gama de problemas, lineares ou não [43].

As redes neurais artificiais (RNA) são modelos matemáticos inspirados no sistema nervoso dos seres humanos. Tais modelos possuem a capacidade de aquisição, manutenção e generalização do conhecimento [44]. As redes neurais têm o objetivo de realizar o processamento de sinais paralelamente distribuídos, através de unidades de processamento denominadas neurônios [45], sendo, basicamente, estruturada por três tipos de elementos:

- Os pesos, que são análogos ao conjunto de sinapses da mente humana;
- Os somadores, que são responsáveis pela soma dos inputs;
- As funções de ativação, que restringe a dimensão dos outputs de um neurônio.

Realizando uma analogia entre os neurônios biológicos e as RNAs, os dendritos podem ser representados pelas entradas do modelo, os pesos representam as sinapses neurais, os estímulos captados pelas entradas são processados pela função de soma e influenciada pelo bias (bias é o elemento responsável por realizar o *offset* dos resultados gerados pela função de ativação em relação ao "Y"). Por fim, a função de transferência (função de transferência é a estrutura responsável pela modelagem do processo dentro das redes neurais artificiais) representa o limiar de disparo do neurônio biológico.

Destaca-se que as redes neurais artificiais podem apresentar diferentes tipos de arquitetura, sendo as redes classificadas de acordo com suas topologias [44]:

- Feedforward de múltiplas camadas: Essas redes são constituídas pela presença de uma ou mais camadas escondidas de neurônios. Nessa arquitetura o fluxo de informação segue de forma sempre adiante, não existindo nem um tipo de realimentação. As principais redes que utilizam esse arranjo são as MultiLayer Perceptron (MLPs) e as redes de base radiais.
- Arquitetura recorrente ou realimentadas: Nesse tipo de arquitetura as informações de saída dos neurônios são realimentadas como sinais de entradas para outros neurônios. Em geral as redes do tipo *Hopfield* utilizam tal tipo de arquitetura.
- Arquitetura de estrutura reticulada: Esse tipo de arquitetura apresenta como característica a disposição dos neurônios visando a extração de características. As redes de *Kohonen* utilizam tal tipo de arquitetura.

No presente trabalho serão utilizadas as redes *feedforward* do tipo *MultiLayer Perceptron*, como apresentado pela Figura 4. Ressalta-se que nesse tipo de arquitetura a informação segue sempre numa única direção (adiante), não existindo nenhum tipo de realimentação durante o processo.

Figura 4 - Rede Neural Artificial do tipo Multi Layer Perceptron [46]

As principais vantagens de utilização dos modelos neurais são [46], [47] e [48]:

- Não-linearidade: para o caso mais comumente utilizado, em que a função de ativação dos neurônios da camada oculta é não-linear, o modelo neural resultante da interconexão destas unidades mais simples apresenta considerável grau de não-linearidade. No entanto, esta vantajosa característica pode ser prejudicial na presença de dados ruidosos, problema que será abordado ao longo deste capítulo.
- Mapeamento entrada-saída: a partir de um conjunto de pares entrada e saída, as redes neurais realizam um mapeamento destes dados, sem a necessidade de desenvolvimento de modelos matemáticos abordando a dinâmica do processo.
- Adaptabilidade: estes modelos apresentam elevada capacidade de adaptação em virtude de mudanças nas condições do ambiente para o qual a rede foi treinada para operar. Para tal, basta treinar a rede novamente, incluindo no conjunto de treinamento os padrões referentes às novas condições operacionais.
- Implementação simples: já que os modelos *feedforward* podem ser vistos como grafos orientados, a implementação destas estruturas é extremamente simples quando comparada com o grau de complexidade dos modelos que podem ser gerados.

Para que o processo de aprendizado seja realizado, diversos parâmetros devem ser ajustados no modelo, sendo isto um dos principais desafios durante seu desenvolvimento. Logo, para resolução de tal problema, foram desenvolvidos diversos algoritmos de treinamento capazes de agregar o conhecimento aos pesos sinápticos (\underline{w}). A seção 2.2.1 irá abordar sobre as duas formas de treinamento utilizadas no presente trabalho.

Matematicamente, a saída de um neurônio da rede neural pode ser descrita pela equação (2.1), sendo essa saída representada pela variável *c*. A Figura 5 ilustra esse neurônio artificial.

$$c = \emptyset(\sum_{i=1}^{n} w_i x_i + b)$$
 (2.1)

Na equação anterior, o conjunto $\underline{w} \in \mathbb{R}^n, \underline{w} = [w_1, w_2, w_3, ..., w_n]$ representa o conjunto de pesos que interligam as entradas $\underline{x} \in \mathbb{R}^n, \underline{x} = [x_1, x_2, x_3, ..., x_n]$, ao neurônio em questão. Torna-se válido frisar que tais entradas podem ser oriundas da própria camada de entrada ou até mesmo de outros neurônios, b $\in \mathbb{R}$ corresponde o *bias* desse neurônio e $\emptyset(.)$ representa a função de ativação. Em geral, são utilizadas funções de ativação não lineares o que provoca uma elevada capacidade de aproximação de diversas funções, por parte do modelo [49].

Na literatura, constam diversos tipos de funções de ativação, a seguir serão descritas as principais funções utilizadas [47]:

• Função de limiar: restringe a saída do neurônio em valores binários [0,1], sendo representada por:

$$\phi(x) = \begin{cases} 1 & se \ x \ge 0 \\ 0 & se \ x < 0 \end{cases}$$
(2.2)

 Função linear: esta função, representada pela equação (2.3), é amplamente utilizada nas redes neurais artificiais para mapear o comportamento entre a variável de entrada e saída do processo, sendo assim aplicada nas RNAs como aproximadora universal de função [44].

$$\phi(x) = x \tag{2.3}$$

• Função linear por partes: representada por:

$$\phi(x) = \begin{cases} 1 & se & x \ge 1/2 \\ x & se & \frac{1}{2} > x > -1/2 \\ 0 & se & x \le 1/2 \end{cases}$$
(2.4)

• Função sigmoidal logística: é definida como uma função crescente com balanceamento adequado entre o comportamento linear e não linear que assume

valores de ativação no intervalo [0,1], sendo a inclinação da função sigmoide determinada pelo parâmetro *a*. Sendo apresentada pela fórmula (2.5):

$$\phi(x) = \frac{1}{1 + e^{-ax}}$$
(2.5)

• Função sigmoidal tangente hiperbólica: a função tangente hiperbólica preserva a forma sigmoidal da função logística, mas assume valores positivos e negativos. Essa função é representada por:

$$\phi(x) = \tanh(ax) \tag{2.6}$$

Destaca-se que a função logística pode ser interpretada como uma variação da função tangente hiperbólica, uma vez que essa função pode assumir valores positivos e negativos, enquanto a função logística assume somente valores maiores que zero. Além disso, ressalta-se que para problemas de regressão, como utilizamos neste trabalho, o tipo mais usual para a função de ativação da camada de saída é a linear por ser uma função que não apresenta saturação, isto é, não limita os valores de saída.

As Figura 6 e Figura 7 representam as funções tangente hiperbólica e logística. Torna-se válido frisar que esses gráficos representam diferentes valores de α , em geral essa variável é ajustada igual a um, permitindo assim que diferentes inclinações sejam calculadas ao longo do processo de treinamento do modelo.

Figura 6 - Gráfico da Tangente Hiperbólica [47]

Figura 7 - Gráfico da Função Logística [47]

Torna-se válido frisar que as redes neurais artificiais são modelos matemáticos capazes de reproduzir inúmeras funções contínuas, desde que exista o número correto de neurônios na camada oculta do modelo. O teorema da aproximação universal [48] e [50] garante que as redes *feedforward* com uma única camada escondida são aptas a aproximar com precisão arbitrária qualquer função continua $F(x): \mathbb{R}n \to \mathbb{R}$. Com isso, torna-se indispensável que a estrutura apresente pelo menos uma camada oculta com número aceitável de neurônios nesta camada e função de ativação limitada, contínua e não constante, ou seja, as redes *feedforward* podem aproximar com uma exatidão arbitrária qualquer função contínua, desde que para isso apresente pelo menos uma camada oculta com um número aceitável de neurônios nesta camada.

Uma das grandes vantagens da aplicação das RNAs consiste em sua elevada capacidade de representação de diversos tipos de funções, sejam elas lineares ou não. Contudo, essa vantagem pode vir a ser um empecilho para a sua aplicação, uma vez que tais modelos podem aproximar até mesmo o ruído presente nos dados utilizados, originando o problema conhecido como *overfitting*.

O objetivo principal na construção do modelo é reproduzir de forma satisfatória o processo de geração dos dados, construindo, assim, uma boa capacidade generalização do processo pelo modelo. Contudo, o descuido durante o ajuste dos parâmetros existentes no

modelo, como os pesos e *bias* durante a etapa de treinamento (apresentada na seção 2.2.1) e o número de neurônios na camada oculta, pode vir a representar uma grande dificuldade para o alcance dessa meta. Na presença de dados ruidosos, o elevado grau de não linearidade disponibilizado pelos *MLP*'s permite que o modelo aproxime também o ruído presente nos dados, o que compromete o desempenho do mesmo (*overfitting*).

Na literatura existem diversos tipos de algoritmos de treinamento para ajuste dos pesos e *bias*. Contudo, em sua grande maioria sua intenção é reduzir o erro médio quadrático entre o valor previsto e o valor real, mas isso não garante o controle de *overfitting*. Além disto, o outro desafio consiste em especificar de forma ideal o número de neurônios na camada oculta.

Torna-se válido frisar que também existe o problema de *underfitting* que ocorre quando a rede necessita de uma aproximação mais complexa do que a projetada pelo modelo. Nesse caso, os resultados alcançados irão apresentar desvios significativos em relação a variável projetada.

A literatura sugere a utilização de técnicas de validação cruzada para o ajuste do número de neurônios na camada oculta e controle do *overfitting/underfitting*. Logo, o desafio consiste na escolha da melhor técnica de validação cruzada a ser utilizada no conjunto de dados disponíveis, dado que existem diversas formas de validação, tais como *Hold-out*, *Leave-one-out*, *K-fold*, *Bootstrap*, e cada uma delas poderá representar diferentes resultados [48], [51] e [52].

No presente trabalho será utilizada a técnica de validação cruzada conhecida como *K-fold*, e como algoritmo de treinamento das redes neurais serão utilizados o treinamento bayesiano e o método proposto por *Levenberg-Marquardt*, descritos nas seções 2.2.1.1e 2.2.1.2, respectivamente. Uma vez que o algoritmo do treinamento bayesiano garante o controle de complexidade do modelo de forma intrínseca, será realizada uma comparação entre os seus resultados e os resultados alcançados pelo método proposto por *Levenberg-Marquardt* em conjunto com a técnica de validação cruzada *K-fold*.

Outro desafio observado durante a utilização de modelos neurais consiste na escolha das variáveis a serem utilizadas como entrada. A escolha indevida dessas características pode ocasionar alguns problemas, por exemplo, aumento na complexidade dos dados de entrada, ou, até mesmo, ocasionar num desempenho ruim do modelo. Apesar desse desafio, no presente trabalho as variáveis de entradas serão escolhidas por especialistas do processo o que irá garantir a utilização de variáveis adequadas ao problema. Caso o leitor apresente a

necessidade do conhecimento de técnicas para escolha automática das variáveis de entrada, as referências [46] e [48] apresentam algoritmos para escolha autônoma dessas variáveis, o que foge ao escopo do presente trabalho.

2.2.1 Treinamento das Redes Neurais Artificiais

Conhecida a estrutura da rede neural a ser utilizada, no caso do presente trabalho as *MLP*'s, torna-se necessário o conhecimento do algoritmo de estimação de seus parâmetros. Logo, a presente seção tem por objetivo descrever o processo de treinamento das redes neurais, onde será visto como os pesos e *bias* são estimados ao longo do processo. São apresentados os algoritmos de treinamento bayesiano e aquele proposto por *Levenberg-Marquardt*.

2.2.1.1 Treinamento Bayesiano

No presente trabalho será utilizado o treinamento bayesiano para ajuste e desenvolvimento do modelo. O precursor desse algoritmo foi David J. C. Mackay em 1992 [53], o qual apresenta os seguintes pontos de destaque [47] e [54]:

- O algoritmo de retropropagação do erro tradicional pode ser visto como um caso particular dos resultados obtidos através da aplicação de técnicas de inferência bayesiana;
- Para problemas de regressão, intervalos de confiança podem ser gerados automaticamente, ou seja, além dos valores médios previstos, poderá ser gerado uma margem de segurança em que esse valor poderá variar;
- Este procedimento permite o desenvolvimento de um algoritmo de determinação automática de relevância das entradas, do inglês *Automatic Relevance Determination* (*ARD*), técnica que pode ser utilizada para seleção de variáveis de entrada;
- Através do cálculo da evidência de cada modelo, relacionada com a probabilidade a
 posteriori de cada estrutura, esta metodologia permite a comparação entre diferentes
 modelos utilizando somente os dados disponíveis para treinamento.

Neste trabalho o treinamento bayesiano foi aplicado a problemas de regressão cujo seu principal objetivo consiste na previsão de valores médios. Todavia ainda existem os problemas de classificação onde seu principal objetivo consiste em determinar a qual classe o determinado padrão se enquadra, as referências [47] e [48] apresentam uma aplicação da metodologia para problemas de classificação. Destaca-se que será apresentado somente a respeito da aplicação da inferência bayesiana à problemas de regressão em função do objetivo do presente trabalho.

O objetivo do treinamento bayesiano consiste em maximizar a probabilidade de realização do conjunto de pesos da rede neural, dados os padrões de entrada e saída. Tornase válido frisar que será assumido como premissa que a estrutura do modelo já se encontra definida, isto é, número de neurônios na camada oculta e as funções de ativação.

Como mencionado anteriormente, o objetivo do treinamento sob a concepção bayesiana consiste em encontrar o conjunto de pesos <u>w</u> que maximize a probabilidade a posteriori $p(\underline{w}|Y, X)$, apresentado na equação (2.7), sendo subentendido que *Y* representa o conjunto de saída utilizado no treinamento e o *X* representa o conjunto de entradas:

$$p(\underline{w}|Y,X) = \frac{p(Y|X,\underline{w}) p(\underline{w})}{p(Y|X)}$$
(2.7)

Nessa equação p(Y|X) é um fator de normalização que não será modificado pelos valores dos pesos <u>w</u>. Logo, o desafio consiste em especificar as distribuições a priori do conjunto de pesos $p(\underline{w})$, bem como sua função de verossimilhança $p(Y|X, \underline{w})$, que é relacionada com a distribuição de ruídos existentes.

Dado o desconhecimento sobre o conjunto de pesos, o desafio consiste em especificar um $p(\underline{w})$ que reflita esse desconhecimento. Dessa forma, a escolha de uma distribuição gaussiana para $p(\underline{w})$ com média nula e matriz de covariância $\alpha^{-1}I, I \in \mathbb{R}^M X \mathbb{R}^M$ igual a matriz identidade, como representada na equação (2.8).

$$p(\underline{w}) = \frac{1}{Z_w(\alpha)} e^{-(\frac{\alpha}{2} ||\underline{w}||^2)}$$

$$Z_w(\alpha) = (\frac{2\pi}{\alpha})^{\frac{M}{2}}$$
(2.8)

Como a escolha da distribuição gaussiana para p(w) há a existência de um algoritmo iterativo para realizar o cálculo de <u>w</u> e algumas simplificações podem ser admitidas para as análises subsequentes.

Conhecida a distribuição $p(\underline{w})$, é necessário conhecer a função de verossimilhança do modelo. Essa função está diretamente relacionada com os ruídos presentes nos padrões.

Supõe-se que o modelo seja definido pela equação (2.9), sendo ζ o ruido apresentado pelo modelo:

$$d(k) = F(k) + \zeta \tag{2.9}$$

A premissa inicial é que o ruido possui uma distribuição gaussiana com média nula e variância β^{-1} , a probabilidade da ocorrência de uma saída especifica d(k), dado seu conjunto de entradas (x_k) e o vetor de pesos (\underline{w}) , pode ser representado pela equação (2.10):

$$p(d_k | \underline{x}_k, \underline{w}) = \frac{e^{-\left\{\frac{\beta}{2} \left[d_k - f(\underline{x}_k, \underline{w})\right]^2\right\}}}{\int e^{-\left\{\frac{\beta}{2} \left[d_k - f(\underline{x}_k, \underline{w})\right]^2\right\}} dd_k}$$
(2.10)

Levando em consideração que todos os padrões pertencentes ao conjunto de treinamento foram obtidos de maneira independente, a função de verossimilhança a ser utilizada será o produto da probabilidade de ocorrência de cada saída, conforme equação (2.11).

$$p(Y|X,\underline{w}) = \prod_{k=1}^{N} p(d_k | \underline{x}_k, \underline{w})$$

$$p(Y|X,\underline{w}) = \frac{1}{Z_Y(\beta)} e^{-\left\{\frac{\beta}{2} \sum_{k=1}^{N} [d_k - f(\underline{x}_k, \underline{w})]^2\right\}}$$

$$Z_Y(\beta) = (\frac{2\pi}{\beta})^{\frac{N}{2}}$$
(2.11)

Nas equações (2.8) e (2.11) foram apresentados os hiperparâmetros $\alpha \in \beta \in \mathbb{R}^+$ que neste trabalho serão adotados como variáveis conhecidas. Todavia, esses hiperparâmetros são calculados e devem ser adicionados ao problema de maximização. Dado que a descrição do cálculo desses hiperparâmetros foge do escopo do presente trabalho, as referências [46]–[48] apresentam esse cálculo caso o leitor tenha a necessidade de conhecimento dessa etapa.

Ao se utilizar a regra de Bayes em conjunto com as equações (2.8) e (2.11) pode-se calcular a probabilidade de \underline{w} dado o conjunto de saídas desejadas Y, assim, o resultado encontrado é definido pela equação (2.12).

$$p(\underline{w}|Y,X) = \frac{1}{Z_s} e^{-S(\underline{w})}$$

$$Z_s = \int e^{-S(\underline{w})} d\underline{w} \qquad (2.12)$$

$$S(\underline{w}) = \frac{\beta}{2} \sum_{k=1}^{N} [d_k - f(\underline{x}_k, \underline{w})]^2 + \frac{\alpha}{2} \sum_{j=1}^{M} w_j^2$$

Uma das grandes motivações para a utilização do treinamento bayesiano aplicado às redes neurais artificiais é a sua capacidade de lidar com o problema de *overfitting* devido ao controle de complexidade inerente ao algoritmo de treinamento. Esse controle pode ser realizado analisando a equação de $S(\underline{w})$ onde existem dois termos. O primeiro informa sobre o ajuste da resposta do modelo aos dados disponíveis. Já a segunda parcela é em relação à inserção do conhecimento através da probabilidade $p(\underline{w})$, o que garante o controle de magnitude do conjunto de pesos [50], isto é, essa parcela é responsável por garantir o controle de *overffiting*. Com a minimização da função $S(\underline{w})$ é encontrado um ponto de equilíbrio entre o ajuste do modelo aos dados disponíveis e o controle de magnitude dos pesos, fazendo com que no modelo não seja visualizado o problema de *overffiting* e garantindo que os mapeamentos adequados possam ser gerados [48].

Destaca-se que no presente trabalho, foi utilizada a função *trainbr* do MATLAB para o desenvolvimento e aplicação do método de treinamento descrito. Essa função utiliza como forma de otimização do funcional $S(\underline{w})$ a técnica proposta por *Levenberg-Marquardt* [55].

2.2.1.2 Treinamento proposto por Levenberg-Marquardt

Em contrapartida ao algoritmo de treinamento bayesiano supracitado, o algoritmo de *Levenberg-Marquardt* possui como objetivo a minimização do erro quadrático médio entre a resposta do modelo e a saída desejada [56]. Esse algoritmo tem sido amplamente utilizado na literatura uma vez que pode ser interpretado como uma variação do método Gradiente Descendente [57], e também, em função de seu rápido tempo de convergência [58].

A regra de atualização dos pesos da RNA, que pode ser entendida como a regra de aprendizagem do modelo, no algoritmo de *Levenberg-Marquardt* é baseada na aceleração

do treinamento em relação a determinação das derivadas de segunda ordem do erro quadrático em relação aos pesos, conforme apresentado pela equação (2.13) [59] e [60]:

$$\underline{W}(k+1) = \underline{W}(k) - [J^{t}(\underline{W})J(\underline{W}) + \mu_{k}I]^{-1}J^{t}(\underline{W})e(\underline{W})$$
(2.13)

Onde, o \underline{W} é o vetor de pesos da RNA, *J* é a matriz jacobiana, *I* é a matriz identidade, μ_k é o fator de amortecimento do método e e(\underline{W}) é o vetor de erro.

Destaca-se que esse método utiliza uma aproximação da matriz Hessiana, matriz com as segundas derivadas, conforme apresentado pela equação (2.13). Essa aproximação garante o melhor tempo de convergência, uma vez que o cálculo da matriz Hessiana completo demanda um elevado tempo computacional.

Além disso, ressalta-se a utilização do fator μ responsável pelo ajuste do passo realizado pelo algoritmo. Quando esse fator se aproxima de zero, o algoritmo de *Levenverg-Marquardt* se comporta como o método de Newton, utilizando a matriz Hessiana aproximada. Quando esse fator apresenta valores elevados, o método se comporta como o algoritmo de gradiente descendente.

A utilização do escalar supracitado garante a melhora do tempo de convergência pelo algoritmo de *Levenverg-Marquardt*, pois o método de Newton garante uma rápida convergência para o ponto de erro mínimo, que pode ser um ponto de mínimo local, e o fator μ garante o deslocamento do método de Newton, o mais rápido possível, para outro ponto de mínimo [61].

2.2.2 Validação Cruzada

Em função da elevada importância para o processo de modelagem, ao longo dos anos inúmeras técnicas de validação foram desenvolvidas. Todavia, dado a complexidade desse assunto, esse tema tem sido amplamente debatido.

Na literatura, basicamente, são encontradas quatro técnicas principais de validação cruzada, que são: *Hold-out, K-fold, Leave-One-Out* e *Bootstrap*. Nesse trabalho será utilizado o método de validação cruzada *K-fold*, por representar uma boa técnica em função do pequeno conjunto de dados disponível.

Ao se utilizar essa metodologia [62] a amostra é dividida em K partes $(d_1, d_2, ..., d_K)$ de tamanhos iguais. Todo esse processo terá K iterações onde em cada uma das iterações a amostra de validação será representada por d_n , com n variando de 1 até K. A amostra de
treino será o conjunto de K-1 partes, ou seja, uma das amostras será retirada com o objetivo de compor o dado de teste.

O método *K-fold* é definido pela fórmula (2.14):

$$kfK = \frac{1}{K} \sum_{n=1}^{K} \frac{1}{m_n} \sum_{i=1}^{m_n} L(y_{in}, \hat{f}_{(-n)}(x_{in}))$$
(2.14)

Onde, $\hat{f}_{(-n)}(x_{in})$ é criado como a amostra de treino de $d_{(K)}$, n = 1 até K, sendo o modelo avaliado nas observações da amostra de teste.

Destaca-se que o número de padrões em cada conjunto $d_{(K)}$ diminui quanto maior for o valor de K [63], logo, para K muito elevado acaba aumentando o custo computacional da técnica, além de uma amostra de teste pequena, o que aumenta a variância. Na literatura se discute qual valor de K seria o ideal, sendo os mais utilizados, dois, três, cinco e dez. Neste trabalho será utilizado K=10. A referência [64] cita que os estudos com K=10 tem os melhores desempenhos, [63] e [65] também utilizam em seus trabalhos K=10.

Capítulo 3 - Metodologia

No capítulo anterior, foi apresentada toda a fundamentação teórica utilizada para o desenvolvimento do modelo proposto, sendo apresentada uma descrição a respeito da análise de segurança de sistemas elétricos, das redes neurais artificiais, seus algoritmos de treinamento e técnicas de validação cruzada que auxiliam no controle de complexidade do modelo. Contudo, existem necessidades de exposição de como essas técnicas serão utilizadas em conjunto para a construção do modelo proposto.

Em virtude da necessidade descrita no parágrafo anterior, o presente capítulo possui como objetivo expor ao leitor como essas técnicas serão agregadas para a construção do modelo. Além disso, os dados utilizados para esta construção também serão apresentados. Destaca-se que para a construção do modelo proposto foi utilizado o ambiente de programação MATLAB.

3.1 Dados Utilizados

Para a elaboração do presente trabalho foram utilizados dados simulados extraídos do programa Organon, descrito no Capítulo 2 - , de uma região sistêmica do SIN. Para o desenvolvimento do modelo, foram utilizados os seguintes dados:

- Direção (DIR);
- Contingência (CTG);
- Distância (DIST);
- Grupo de Geração 1 (G1);
- Grupo de Geração 2 (G2);
- Grupo de Geração 3 (G3);
- Índice de Estabilidade (STBLDX);
- Índice de Violação de Tensão (VVIO);
- Índice de Violação de Carregamento (TVIO).

Ressalta-se que as variáveis Índice de Estabilidade, Índice de Violação de Tensão e Índice de Violação de Carregamento serão previstas pelo modelo proposto. Logo, as demais variáveis serão utilizadas como entradas no modelo. Para o melhor entendimento do leitor, torna-se válido apresentar as definições das variáveis supracitadas, que são [41]:

- Distância: equivale à distância euclidiana entre um novo ponto de operação e o ponto de operação de partida. Essa distância é calculada em relação a alteração dos grupos de geração 1 e 2, tendo como unidade MW. Ressalta-se que a unidade MW para representar distância ocorre em função dos eixos do gráfico serem representados nessa unidade, logo, o cálculo dessa distância apresentará como unidade final MW;
- Contingência: lista de contingência pré-estabelecida para a simulação da região de segurança;
- Direção: representa o deslocamento do Ponto de Operação em decorrência da alteração dos despachos de geração;
- Geração: grupos de usinas onde são efetuadas alterações em seu despacho.
 No presente trabalho, foram utilizadas como gerações as máquinas das regiões Norte

(Geração 1), Nordeste (Geração 2) e Sudeste (Geração 3). As contingências foram dedicadas à interligação Norte-Nordeste e algumas linhas de transmissão da região Nordeste.

Ressalta-se que as variáveis previstas irão apresentar suas definições no Capítulo 4 -, uma vez que será mais compreensível para o leitor.

3.2 Programa Desenvolvido

Será apresentado um macrofluxo, Figura 8, que explica de forma sucinta como encontra-se estruturado o modelo desenvolvido, sendo explicado cada passo de forma mais detalhada a seguir.

Passo 1: Leitura da Base de Dados

Nesse momento será executada a leitura de todos os dados utilizados no modelo desenvolvido, como:

- Inputs: Direção, Contingência, Distância, Grupo de geração 1 (G1), Grupo de geração 2 (G2) e Grupo de geração 3 (G3).
- Outputs: Índice de Estabilidade (STBLDX), Índice de Violação de Tensão (VVIO) e Índice de Violação de Carregamento (TVIO).

Figura 8 - Macrofluxo do Modelo Desenvolvido

Parte 2: Normaliza Base de Dados

Devido ao uso de unidades e valores distintos, para que não ocorram problemas em função disto torna-se necessário que os dados sejam normalizados [6], conforme descrito pela equação (3.1):

$$Y = \frac{(U_b - L_b) \times (X - min)}{X_{max} - X_{min}} - L_b$$
(3.1)

Sendo:

Y é a variável normalizada;

X é a variável em escala original;

 U_b é o limite superior, que nesse caso será utilizado "1";

 L_b é o limite inferior, que nesse caso será utilizado "-1";

 $X_{máx}$ é o valor máximo da variável original;

 X_{min} é o valor mínimo da variável original.

Parte 3: Definição da Variável a ser Prevista

Uma vez que existem três variáveis a serem previstas, STBLDX, VVIO e TVIO, optou-se pela predição de cada uma dessas variáveis separadamente. Dessa forma, nesse momento escolhe-se qual variável será prevista ao final do método, isto é, caso o usuário deseje realizar a previsão do Índice de Estabilidade, na parte da definição da variável a ser

prevista, coloca-se STBLDX, caso deseje-se a previsão do Índice de Violação de Tensão, coloca-se VVIO, e, por fim, caso deseje-se a previsão do Índice de Violação de Carregamento, coloca-se TVIO.

Parte 4: Escolha do Algoritmo de Treinamento

Neste trabalho foram utilizadas duas formas de treinamento das redes neurais artificiais: o treinamento bayesiano (*trainbr*) e o algoritmo de treinamento de *Levenberg-Marquardt* (*trainlm*).

Ressalta-se que caso o usuário opte pelo algoritmo de treinamento de *Levenberg-Marquardt* será utilizada a técnica de validação cruzada *K-fold*, e com isso, deverá ser definido a priori o número de grupos a serem utilizados para a divisão dos padrões disponíveis para o treinamento/validação.

Parte 5: Definição dos Conjuntos

Essa parte será dividida para facilitar a explicação:

- Treinamento Bayesiano (*trainbr*): neste algoritmo não há a necessidade da divisão dos dados entre treinamento e validação. Logo, todo o conjunto de dados disponível para treinamento será utilizado.
- Algoritmo de Treinamento de Levenberg-Marquardt (trainlm): neste caso, existe a necessidade da divisão dos dados disponíveis entre treinamento e validação, em função do algoritmo de treinamento não possuir controle de complexidade de maneira intrínseca, sendo essa divisão realizada de forma aleatória.

Parte 6: Treinamento do Modelo

Nesse ponto aplica-se a metodologia de treinamento nos conjuntos de dados definidos na etapa anterior, com o objetivo de ajustar os parâmetros da rede neural.

Uma vez que ao final do treinamento existirão inúmeros modelos treinados, torna-se necessária a definição de qual desses modelos deverá ser escolhido como modelo final. Logo, para essa definição, será utilizado o Coeficiente de Determinação (R^2), apresentado no próximo tópico. Destaca-se que, para o treinamento bayesiano, será escolhido o modelo que apresentar melhor R^2 para o conjunto de treinamento, enquanto para o modelo que utilizar o treinamento proposto por *Levenberg-Marquardt* será escolhido o modelo que apresentar melhor R^2 para o conjunto de validação.

Parte 7: Aplicação do Modelo ao Conjunto de Teste

Após o treinamento dos modelos, aplica-se o mesmo ao conjunto de teste com o objetivo de averiguar a assertividade do modelo construído.

Parte 8: Cálculos dos Resultados do Modelo

Após a aplicação do modelo no conjunto de teste, calcula-se as estatísticas de avaliações dos resultados: erro absoluto médio, correlação e R^2 . Destaca-se que não foi calculado o erro percentual médio (do inglês, *MAPE*) uma vez que existem valores verificados iguais a zero, o que impossibilita a avaliação dos resultados por essa estatística.

Esses resultados são salvos pelo modelo em planilhas para análise posterior pelo usuário caso seja de interesse.

3.3 Critérios de Avaliação dos Resultados

Devido a necessidade de comparação dos dados e averiguação de qual foi a assertividade do modelo desenvolvido, serão apresentados a seguir os métodos utilizados para a mensuração dos resultados alcançados.

3.3.1 Erro

O erro analisa a diferença ente o valor verificado e o valor previsto. A equação a seguir descreve o cálculo realizado.

$$E = V_f - V_p \tag{3.2}$$

Onde: $E \in o Erro;$ $V_f \in o Valor Verificado;$ $V_p \in o Valor Previsto.$

3.3.2 Erro Absoluto Médio

Esse índice é o resultado do somatório do erro absoluto dividido pelo número de padrões, como na fórmula (3.3) [48].

$$E_{am} = \frac{\sum_{i=1}^{N} |V_i - P_i|}{N}$$
(3.3)

Sendo:

 E_{am} é o Erro Absoluto Médio; V_i é o Valor Verificado para a *i*-ésima amostra; P_i é o Valor Previsto para a *i*-ésima amostra; N é o número de padrões.

3.3.3 Coeficiente de Correlação de Pearson

O coeficiente de correlação de Pearson, ou simplesmente correlação, pode ser definido como o grau associação linear entre duas variáveis quantitativas [66]. A equação (3.4) apresenta a fórmula deste coeficiente.

Destaca-se que o coeficiente de correlação varia entre menos um e um, sendo quanto mais próximo de um maior a correlação entre os dados e quando próxima a menos um indica que os dados variam de forma opostas. Por fim, ressalta-se que quando o coeficiente de correlação de Pearson apresenta valores próximos a zero, isto indica que os dados não possuem grau de associação [67].

$$\rho_{(X,Y)} = \frac{COV_{(X,Y)}}{\sigma_X \sigma_Y} \tag{3.4}$$

Sendo:

 $COV_{(X,Y)}$ é a covariância entre X e Y;

 σ_X é o desvio padrão de X;

 σ_Y é o desvio padrão de Y.

Para o melhor entendimento do leitor, é válido destacar que o desvio padrão pode ser definido como uma medida de dispersão do conjunto de dados em relação à sua média [67]. A covariância pode ser determinada como o grau de associação linear entre duas variáveis, contudo esse índice não é limitado como o coeficiente de correlação de Pearson.

3.3.4 Coeficiente de Determinação

O coeficiente de determinação (R²) possui como objetivo quantificar a variabilidade da variável resposta em relação à variável de ajuste, sendo muitas vezes utilizado como medida de qualidade de ajuste do modelo [68].

Esse coeficiente pode ser definido como o quadrado do coeficiente de correlação de Pearson, apresentado pela equação (3.5) [69].

$$R^2 = \rho_{(X,Y)} \,\rho_{(X,Y)} \tag{3.5}$$

Sendo:

 R^2 é o Coeficiente de Determinação;

 $\rho_{(X,Y)}$ é o Coeficiente de Correlação de Pearson.

Este coeficiente é limitado entre zero e um, sendo quanto mais próximo de zero indica a falta de ajuste do modelo e quando próximo a um indica um bom ajuste do modelo aos dados disponíveis.

Capítulo 4 - Resultados

Neste capítulo será realizada uma discussão a respeito dos resultados alcançados ao se aplicar as metodologias propostas ao conjunto de teste. Destaca-se que, como supracitado, as variáveis de entrada utilizadas no modelo foram: direção, contingência, distância, grupo de geração 1 (G1), grupo de geração 2 (G2) e grupo de geração 3 (G3). Sendo previstos três indicadores, que são: o índice de estabilidade (STBLDX), o índice de violação de tensão (VVIO) e por fim, o índice de violação de carregamento (TVIO). Além disso, ressalta-se que dois tipos de treinamentos serão testados: o treinamento bayesiano e o algoritmo de treinamento proposto por *Levenberg-Marquardt*.

Devido à necessidade de reprodução das análises realizadas, o conjunto de treinamento e teste foram mantidos fixos, para que seja realizada uma comparação fidedigna entre os modelos desenvolvidos. Torna-se válido frisar que o conjunto de teste possui 274 padrões escolhidos aleatoriamente do total de 1372 padrões disponíveis.

Para ambos os tipos de treinamentos, torna-se necessário definir o número máximo de neurônios a serem utilizados na camada escondida do modelo. Logo, foi definido como número máximo o valor de 25 neurônios para ambos os algoritmos, ressalta-se que essa escolha foi realizada devido a limitação computacional uma vez que acima de 25 neurônios o tempo de processamento se tornou bastante elevado e não houve ganhos nos resultados alcançados. Outro parâmetro a ser definido durante o desenvolvimento do modelo, ao se utilizar o treinamento proposto por *Levenberg-Marquardt*, é o número de grupos a ser utilizado pelo método de validação cruzada *K-fold*, sendo utilizado neste trabalho o valor de K=10.

4.1 Índice de Estabilidade (STBLDX)

O índice de estabilidade informado pelo programa Organon possui como objetivo caracterizar a condição de estabilidade do sistema frente à perturbação simulada. Tal índice pode ser interpretado de quatro formas diferentes que são:

 Valores próximos a um: indicam que a perturbação simulada não afetou o comportamento do sistema, isto é, o ponto de operação original permaneceu praticamente inalterado;

- Valores próximos a zero: indicam condição de estabilidade marginal, isto é, o sistema encontra-se próximo a perder sua estabilidade;
- Valores negativos: indicam que o sistema perdeu a estabilidade, e quanto mais próximo de menos um, indica que o sistema apresenta condição de instabilidade grave;
- Além das classificações convencionais, listadas anteriormente, o *software* Organon classifica outros três tipos de valores para indicar, especificamente, alguns tipos de instabilidade, sendo:
 - a. O valor de -1,9 indica que o ângulo do rotor de alguma máquina superou seu limite angular máximo de 2π;
 - b. O valor de -1,6 indica que existe perda de frequência de alguma máquina. Em geral tal valor limite é de 0,1pu (±6Hz);
 - c. O valor de -1,3 indica que houve colapso de tensão em algum ponto do sistema.

4.1.1 Treinamento Bayesiano (STBLDX)

A Figura 9 expõe a evolução do Índice de Determinação durante a etapa de treinamento, observa-se nessa figura que o melhor R² alcançado foi de 0,9433. Como supracitado o melhor modelo é escolhido através do melhor R², dessa forma para STBLDX no treinamento bayesiano o melhor modelo apresenta 24 neurônios em sua camada escondida.

Figura 9 - Evolução do R² durante a etapa de treinamento (STBLDX - Treinamento Bayesiano)

A Figura 10 apresenta o comportamento das previsões do modelo em relação ao seu valor original, quando aplicado ao conjunto de teste. O desvio absoluto médio alcançado foi de 0,0915 enquanto o R² foi de 0,6752. Observa-se que na grande maioria dos casos, o modelo foi capaz de acompanhar o comportamento do dado original em sua previsão.

Figura 10 - Análise do Índice de Estabilidade (Treinamento Bayesiano)

Além dos resultados apresentados anteriormente, torna-se válido destacar que o modelo apresentou resultados mais "conservadores" em sua previsão, uma vez que em sete casos o modelo apresentou indicações de instabilidade em quanto o sistema ainda estava estável (falso-positivo), enquanto em somente dois casos o modelo apresentou resultados de estabilidade quando o sistema havia apresentado perda de sua estabilidade (falso-negativo). Ressalta-se que para os casos de falso-positivo, o sistema estava próximo da perda de sua estabilidade.

4.1.2 Algoritmo de Treinamento de *Levenberg-Marquardt* (STBLDX)

Ao se aplicar o modelo proposto, utilizando o algoritmo de treinamento de *Levenberg-Marquardt*, foi alcançado um R² de 0,7618 durante o treinamento do modelo com 12 neurônios em sua cama oculta, conforme apresentado na Figura 11. Além disso, é possível observar através dessa figura que outros modelos treinados apresentaram resultados de R² próximos ao melhor R² alcançado, como por exemplo os modelos treinados com 9, 10 e 14 neurônios.

Figura 11 - Evolução do R² durante a etapa de treinamento (STBLDX - Treinamento proposto por *Levenberg-Marquardt*)

A Figura 12 apresenta os resultados quando aplicado o modelo ao conjunto de teste, sendo o R^2 verificado de 0,5919, o erro médio absoluto encontrado foi de 0,1007.

Ressalta-se que, assim como no modelo anterior, os resultados observados conseguiram captar de forma satisfatória o comportamento dos dados originais.

Figura 12 - Análise do Índice de Estabilidade com a utilização de K-fold (Treinamento de *Levenberg-Marquartd*)

Para o treinamento proposto por *Levenberg-Marquardt* o modelo também apresentou sete casos de falso-positivo e dois casos de falso-negativo. Todavia, para esse treinamento em três dos sete casos de falso-positivo o sistema não estava próximo da perda da sua estabilidade.

4.2 Índice de Violação de Tensão – VVIO

O Índice de Violação de Tensão informa ao usuário a respeito da pior violação de tensão monitorada nas barras do sistema. De forma geral, valores negativos nesse índice indicam que não existe violações de tensão nas barras e valores positivos indicam que há alguma violação de tensão nas barras. Para cálculo desse fator utiliza-se as fórmulas (4.1) e (4.2):

$$VVIO = V_{atual} - V_{Lim,m\acute{a}xima} \tag{4.1}$$

$$VVIO = V_{Lim,minima} - V_{atual} \tag{4.2}$$

Sendo:

Vatual é a tensão atual da barra;

V_{Lim,máxima} é o limite máximo de tensão na barra;

V_{Lim,mínimo} é o limite mínimo de tensão na barra.

4.2.1 Treinamento Bayesiano (VVIO)

Durante a etapa de treinamento, o melhor modelo desenvolvido utilizando algoritmo de treinamento bayesiano apresentou em sua camada oculta 21 neurônios com um R² de 0,9919, como observado na Figura 13. Através do R² alcançado, é possível observar que o modelo apresentou um excelente ajuste aos dados durante a etapa de treinamento.

Figura 13 - Evolução do R² durante a etapa de treinamento (VVIO - Treinamento Bayesiano)

Em relação a etapa de teste, o erro médio absoluto verificado foi de 0,0203 e o R² alcançado neste caso foi de 0,7539. A Figura 14 apresenta os valores previstos, os valores verificados e o erro do modelo durante a etapa de teste. Com o auxílio da Figura 14 é possível observar que o modelo conseguiu reproduzir de uma forma satisfatória os dados verificados, conseguindo reproduzir a variação dos dados, embora com erros de magnitude em alguns pontos.

Figura 14 - Análise do Índice de Violação de Tensão (Treinamento Bayesiano)

Durante a estimação do Índice de Violação de Tensão, foram observados 18 casos de falso-positivo e 17 casos de falso-negativos. Destaca-se que em 14 dos 18 casos de falso-positivo o sistema estava no limiar da perda de sua estabilidade e nos 17 casos de falso-negativo os valores previstos estão próximos a sinalização de perda de estabilidade.

4.2.2 Algoritmo de Treinamento de *Levenberg-Marquardt* (VVIO)

Durante a modelagem utilizando a técnica de validação cruzada e o algoritmo de treinamento proposto por *Levenverg-Marquardt*, o modelo construído apresentou em sua camada oculta 14 neurônios, tendo alcançado um R² de 0,7658 para o conjunto de treinamento como pode ser observado na Figura 15.

Figura 15 - Evolução do R² durante a etapa de treinamento (VVIO - Treinamento proposto por *Levenberg-Marquardt*)

Ao se aplicar o modelo no conjunto de teste, o erro médio absoluto obtido foi de 0,0332, tendo como R^2 o valor de 0,3464. A Figura 16 apresenta os resultados alcançados com a utilização do modelo proposto na etapa de teste, através dos resultados observados nessa figura verifica-se que apesar do modelo apresentar um bom desempenho na maioria das amostras, em alguns pontos o resultado foi aquém do esperado.

Figura 16 - Análise do Índice de Violação de Tensão com a utilização de *K-fold* (Treinamento de *Levenberg-Marquardt*)

Os resultados alcançados durante a utilização do treinamento proposto por *Levenberg-Marquardt* indicam 21 e 28 casos de falso-positivo e falso-negativo, respectivamente. Ressalta-se que, apesar das previsões mais "otimistas" pelo modelo, em 21 dos 28 casos de falso-negativo o modelo estaria sinalizando ao operador uma eminência de perda da estabilidade, ou seja, apesar das indicações serem de estabilidade ainda assim os valores previstos estariam próximos a instabilidade.

4.3 Índice de Carregamento - TVIO

O índice de carregamento informa ao usuário do Organon sobre o maior carregamento observado nos equipamentos monitorados. Quando superior a 100 indica que existem violações de carregamento no circuito.

4.3.1 Treinamento Bayesiano (TVIO)

A Figura 17 apresenta a evolução do Coeficiente de Determinação durante a etapa de treinamento. Para a variável TVIO foi observado um melhor R² no valor de 0,9895 com 21 neurônios.

Figura 17 - Evolução do R² durante a etapa de treinamento (TVIO - Treinamento Bayesiano)

Ao ser aplicado no conjunto de teste, o modelo desenvolvido apresentou um R^2 de 0,8398 e no que tange ao erro médio absoluto, o valor alcançado foi de 1,0058. A Figura 18 apresenta os resultados ao se utilizar o modelo desenvolvido na etapa de teste, torna-se válido ressaltar que de forma geral o modelo conseguiu realizar boas previsões.

Para a variável em análise o modelo apresentou dois casos de falso-positivo e falso negativo. Destaca-se que para os casos de falso-negativo o sistema havia acabado de perder sua estabilidade, enquanto as previsões indicavam valores muito próximos a isto. Logo, em função da proximidade da indicação da perda de estabilidade o modelo estaria sinalizando ao operador que o sistema pode estar próximo a perda da estabilidade.

4.3.1 Algoritmo de Treinamento de *Levenberg-Marquardt* (TVIO)

Durante a modelagem, com a utilização do algoritmo de treinamento de *Levenberg-Marquardt* foram utilizados sete neurônios na camada oculta do modelo. O resultado obtido para o conjunto de treinamento foi um R² no valor de 0,8579, conforme exposto na Figura 19. Através dessa figura observa-se que o modelo treinado com sete neurônios apresentou valor de R² muito superior aos demais modelos, com exceção dos modelos treinados com 16 e 24 neurônios que apresentaram resultados próximos ao melhor R² observado.

Figura 19 - Evolução do R² durante a etapa de treinamento (TVIO - Treinamento proposto por *Levenberg-Marquardt*)

Quando aplicado o modelo para o conjunto de teste, o resultado obtido foi de um erro absoluto médio de 1,6089 e R^2 de 0,5910. Os resultados alcançados na etapa de teste do modelo, encontram-se representados na Figura 20. Através dessa figura é possível verificar que o modelo não conseguiu reproduzir os dados verificados somente em três conjunto de dados.

Figura 20 - Análise do Índice de Violação de Carregamento com a utilização de *K-fold* (Treinamento de *Levenberg-Marquardt*)

Ao se utilizar esse algoritmo de treinamento o modelo apresentou quatro casos de falso positivo e somente dois casos de falso-negativo. Em relação aos resultados alcançados em 50% dos casos o sistema estava no limiar da mudança de estado, ou seja, para os casos de falso-positivo o sistema estava próximo da perda de estabilidade e para os casos de falso-negativo o sistema estava próximo à estabilidade.

4.4 Resumo

As Tabela 1 e Tabela 2 apresentam um resumo dos resultados alcançados para cada uma das formas de treinamento. Nestas tabelas podem ser vistos o número de neurônios utilizados em cada um dos modelos, o erro médio absoluto, o coeficiente de determinação (R²), para a etapa de teste, e o tempo de simulação (tempo de treinamento + tempo de teste do modelo). Destaca-se que os testes foram realizados utilizando uma máquina com o processador Intel (R) Core (TM) i7-8565U CPU @ 1.80 GHz com 8,00 GB de RAM, 1TB HDD, 128GB SSD e sistema operacional *Windows* 10 *Home Single Language* de 64 bits.

Através dos resultados expostos nas Tabela 1 eTabela 2, é possível observar que os modelos apresentaram resultados satisfatórios, com R² superiores a 0,75 em todas as variáveis no treinamento bayesiano, com exceção do STBLDX. Contudo, apesar da variável STBLDX apresentar valores de R² inferiores a 0,75, ainda assim seu erro absoluto médio encontra-se dentro do limite aceitável.

Método de treinamento Bayesiano									
	Tempo de	Número de	Erro Médio	R2					
	Simulação (s)	Neurônios	Absoluto	i i i i i i i i i i i i i i i i i i i					
STBLDX	232,109	24	0,0915	0,6752					
VVIO	320,110	21	0,0203	0,7540					
TVIO	292,596	21	1,0059	0,8398					

Tabela 1 - Tabela Resumo dos Resultados com o Treinamento Bayesiano - Teste

Tabela 2 - Tabela Resumo dos Resultados com o Algoritmo de Treinamento deLevenberg-Marquardt - Teste

Método de treinamento: Levenberg-Marquardt									
	Tempo de	Número de	Erro Médio	R²					
	Simulação (s)	Neurônios	Absoluto						
STBLDX	1.172,667	12	0,1007	0,5919					
VVIO	1.121,559	14	0,0332	0,3463					
TVIO	1.180,882	7	1,6089	0,5910					

Através das tabelas supracitadas, torna-se possível observar um maior tempo de simulação gasto pelo algoritmo de treinamento proposto por *Levenverg-Marquardt*. Torna-se válido frisar que esse algoritmo apresenta rápida convergência, contudo a utilização da técnica de validação cruzada demanda um elevado esforço computacional em decorrência do aumento do número de modelos a serem treinados, o que provoca um aumento do tempo de simulação.

Ressalta-se que o tempo apresentado nas Tabela 1 e Tabela 2 consistem no tempo total de execução do modelo, isto é, tempo de leitura dos dados, treinamento e previsão do modelo. Contudo, durante a aplicação desses modelos nos centros de operação o único tempo gasto será o de previsão, ou seja, o tempo para o modelo processar as variáveis de entrada e estimar as variáveis previstas. Logo, através da Tabela 3 é possível observar uma pequena variação entre os tempos de previsão, uma vez que a variação observada se encontra entre 0,008 s e 0,012 s.

Destaca-se que, para o ambiente de operação a obtenção de dados e previsões de forma rápida e confiável se torna um dos grandes desafios durante a realização das atividades. Como observado na Tabela 3 o modelo proposto é capaz de gerar previsões em

aproximadamente 10 ms, tempo este extremamente condizente com as rotinas do centro de operação.

Tempo de Previsão (s)								
	Treinamento Bayesiano	Treinamento proposto por						
	Tremamento Dayesiano	Levenberg-Marquardt						
STBLDX	0,0111	0,0120						
VVIO	0,0100	0,0080						
TVIO	0,0090	0,0110						

Tabela 3 - Resumo do Tempo de Previsão

Torna-se válido ressaltar que as amostras entre 100 e 150 estão situadas em regiões de operação em instabilidade ou no limiar da perda de estabilidade, enquanto nas demais amostras o sistema encontra-se operando numa região de maior estabilidade. Essa afirmação pode ser observada através das Figura 10,Figura 12,Figura 14,Figura 16, Figura 18 e Figura 20, bem como através das Tabela 4 e Tabela 5 em anexo. Além da afirmação anterior, ao se analisar as figuras listadas anteriormente, observa-se que a maioria dos padrões previstos apresentam pequenas diferenças em relação aos valores verificados, o que demostra uma boa capacidade de representação dos dados pelo modelo. Destaca-se que em alguns casos, o modelo apresentou previsões destoantes dos valores verificados, dado que essas previsões foram em pontos específicos, torna-se indicado uma melhor análise desses exemplos uma vez que esse erro pode estar ocorrendo em função de algum *missing* ou *outliers* nos padrões de entrada.

Além dos fatos supracitados, no que tange ao desempenho dos modelos e aos tempos de simulação e previsão, torna-se válido destacar as previsões mais "conservadores" realizadas pelos modelos propostos onde em todos os casos, a exceção das previsões da variável VVIO com o treinamento proposto por *Levenberg-Marquardt*, os modelos apresentaram quantidade de falso-positivo superiores ao falso-negativo. Torna-se claro que o maior objetivo consiste em minimizar o erro de estimação dessas variáveis, contudo quando o modelo apresenta resultados conservadores em sua saída, como encontra-se ocorrendo nas simulações anteriores, o sistema elétrico estaria atuando de forma ainda segura, uma vez que, apesar do erro, o modelo estaria dando indicativos ao operador de possíveis violações no sistema, ficando a cargo do especialista realizar a análise e tomar as decisões cabíveis.

Todos os resultados alcançados durante os testes dos modelos são detalhados nos Anexos, sendo apresentado nas Tabela 4 eTabela 5 além dos resultados alcançados a relação entre as variáveis de entrada do modelo e as previsões, isto é, a relação entre as informações da região de segurança que são utilizadas como entradas e seus respectivos índices verificados e previsto.

Capítulo 5 - Conclusão e Trabalhos Futuros

Através do presente trabalho pode-se observar o bom desempenho das redes neurais artificiais ao serem aplicadas ao problema de estimação de indicadores utilizados para análise de segurança dos sistemas elétricos de potência, onde resultados satisfatórios foram alcançados.

Destaca-se a necessidade do ajuste de diversos parâmetros durante a aplicação e desenvolvimento dessa classe de modelo. Logo, de acordo com os fatos mencionados tornase claro a importância do desenvolvimento de métodos que garantam o controle de complexidade desse tipo de modelo como ocorre no treinamento bayesiano utilizado nessa dissertação.

Através dos resultados obtidos, verifica-se que a ferramenta desenvolvida apresentou bons resultados quando utilizada para estimar os indicadores de segurança, o que viabiliza sua utilização nas rotinas referentes a análise de segurança dentro dos centros de controle. Além do bom resultado alcançado, observa-se que a ferramenta apresenta um bom desempenho em relação ao seu tempo de previsão, atualizando as suas previsões em aproximadamente 10 ms. Ressalta-se que os tempos de previsão nos dois modelos desenvolvidos apresentaram pequenas variações entre si, o que representa mais uma vantagem para a sua utilização dentro dos centros de operação, dado que os resultados serão apresentados em poucos milissegundos ao operador.

Torna-se válido ressaltar a respeito do tempo de simulação uma vez que a ferramenta possui a capacidade de se adaptar e gerar resultados quando novos padrões são apresentados com o tempo médio de quatro minutos (treinamento bayesiano), apesar desse tempo está um pouco superior do desejado na sala de controle, esse resultado ainda permite uma rápida atualização do modelo pela equipe de planejamento com o objetivo de melhorar a acurácia dos resultados frente aos novos padrões de dados observados no tempo real.

Torna-se válido destacar que na maioria dos casos o modelo apresentou resultados mais "conservadores" em suas previsões, o que garante uma maior segurança durante sua utilização, apesar de seus erros. Cabe destacar que, maiores análises devem ser realizadas para a variável STBLDX, uma vez que o modelo apresentou previsões com valores superiores a um e por definição essa variável está limitada entre -1,9 e um.

Dessa forma, através dos resultados alcançados é possível observar a viabilidade da aplicação das redes neurais artificiais para a estimação de variáveis referentes a análise de

segurança do sistema elétrico de potência. Sendo observado que até mesmo para os casos em que o R² apresentou valores um pouco mais distantes a um, ainda assim foi verificado erros médios absolutos baixos e poucas indicações de falso-negativo, o que corrobora para uma maior segurança durante a utilização do modelo proposto.

Destaca-se que o algoritmo de treinamento bayesiano despontou como a melhor forma de treinamento para as Redes Neurais Artificiais quando comparado ao algoritmo de treinamento de *Levenberg-Marquardt*, que apresentou um pior desempenho e um maior tempo de simulação. Ressalta-se que o maior tempo computacional gasto pelo modelo com o treinamento de *Levenberg-Marquardt* ocorre em função do processo de validação cruzada necessário ao método, uma vez que esse algoritmo não apresenta controle de complexidade de forma intrínseca em sua formulação.

Torna-se válido frisar que, apesar do modelo proposto nesse trabalho ter sido desenvolvido utilizando dados do *software* Organon, o presente modelo poderá ser utilizado em conjunto com outras ferramentas de análise de segurança, não se tornando assim, dependente unicamente deste *software*.

Além dos fatos previamente mencionados observa-se uma vasta possibilidade de desenvolvimento de trabalhos futuros como por exemplo: o desenvolvimento de uma ferramenta que seja capaz de interpretar os resultados alcançados e informar ao usuário o estado operativo do SEP. No presente trabalho foi realizado uma regressão com o objetivo de estimar variáveis de referentes ao estado operativo da rede, ao se aplicar a metodologia proposta de classificação os resultados apresentados seriam indicativos da segurança da rede, isto é, se a rede encontra-se estável ou não, dessa forma não será necessário a interpretação das variáveis pelo analista.

Outro trabalho futuro sugerido é a utilização de técnicas que garantam a melhor escolha das variáveis de entrada a serem utilizadas como *inputs* nas RNAs, com isso, uma menor dependência por parte do especialista será vista durante o processo de ajuste do modelo.

Com a elevada incerteza associada ao processo de previsão por parte das redes neurais, o desenvolvimento de índices estatísticos que visam a quantificação dessa incerteza se torna indicado. Dado o tipo de treinamento aplicado as RNAs no presente trabalho, o desenvolvimento de variáveis probabilísticas se torna possível, portanto, outro trabalho futuro sugerido é a aplicação desses índices estatísticos como forma de alertar ao especialista a respeito da criticidade do caso a ser estudado. Torna-se válido destacar que a aplicação do modelo proposto nos centros de operação irá demandar um rápido processamento em função do elevado volume da dados recebidos a cada instante de tempo, divergindo assim um pouco da simulação realizada onde o conjunto de dados era um pouco mais controlado. Dessa forma, torna-se indicado a aplicação de técnicas de computação paralela que permitirá uma melhoria no desempenho do modelo em tempo real.

Portanto, através do presente trabalho, observa-se uma possível aplicação das RNAs em conjunto com *softwares* de análise de segurança para a estimação de indicadores de segurança, sendo alcançados bons resultados no que tange ao desempenho do modelo e em seu tempo de simulação.

Bibliografia

[1]X. Li, Z. Li, L. Guan, L. Zhu, e F. Liu, "Review on Transient Voltage Stability of Power System", in *2020 IEEE Sustainable Power and Energy Conference (iSPEC)*, Chengdu, China, nov. 2020, p. 940–947. doi: 10.1109/iSPEC50848.2020.9351059.

[2]I. M. El-Amin e A.-A. M. Al-Shams, "Transient stability assessment using artificial neural networks", *Electr. Power Syst. Res.*, vol. 40, n° 1, p. 7–16, jan. 1997, doi: 10.1016/S0378-7796(96)01124-8.

[3]M. Shahidehpour, F. Tinney, e Yong Fu, "Impact of Security on Power Systems Operation", *Proc. IEEE*, vol. 93, nº 11, p. 2013–2025, nov. 2005, doi: 10.1109/JPROC.2005.857490.

[4]"ONS - Operador Nacional do Sistema Elétrico", *Procedimentos de Rede - MPO*. http://ons.org.br:80/paginas/sobre-o-ons/procedimentos-de-rede/mpo (acessado 20 de janeiro de 2022).

[5]J. Jardim, C. Neto, e M. G. Dos Santos, "Brazilian System Operator Online Security Assessment System", in 2006 IEEE PES Power Systems Conference and Exposition, Atlanta, Georgia, USA, 2006, p. 7–12. doi: 10.1109/PSCE.2006.296219.

[6]S. R. e Silva e F. Schimidt, "Reduction of Input Variables in Artificial Neural Networks as from Principal Components Analysis Data in the Modeling of Dissolved Oxygen", *Quím. Nova*, 2016, doi: 10.5935/0100-4042.20160024.

[7]S. Sterpu, W. Lu, Y. Besanger, e N. HadjSaid, "Power systems security analysis", in 2006 *IEEE Power Engineering Society General Meeting*, Montreal, Que., Canada, 2006, p. 5 pp. doi: 10.1109/PES.2006.1708929.

[8]N. Balu *et al.*, "On-line power system security analysis", *Proc. IEEE*, vol. 80, nº 2, p. 262–282, fev. 1992, doi: 10.1109/5.123296.

[9]D. P. Popović, "An efficient unified methodology for steady-state and dynamic security assessment of power systems", *Electr. Power Syst. Res.*, vol. 17, n° 3, p. 179–188, nov. 1989, doi: 10.1016/0378-7796(89)90020-5.

[10] A. Ghafurian e G. J. Berg, "A stability measure for use in power system transient stability studies", *Electr. Power Syst. Res.*, vol. 4, nº 2, p. 121–128, abr. 1981, doi: 10.1016/0378-7796(81)90015-8.

[11] A. R. Sobbouhi e A. Vahedi, "Transient stability prediction of power system; a review on methods, classification and considerations", *Electr. Power Syst. Res.*, vol. 190, p. 106853, jan. 2021, doi: 10.1016/j.epsr.2020.106853.

[12] H. M. Tan e R. Zivanovic, "Transient stability sensitivity analysis of a simplified power system", in *2007 Australasian Universities Power Engineering Conference*, Perth, Australia, dez. 2007, p. 1–7. doi: 10.1109/AUPEC.2007.4548058.

[13] Y. Wang, F. S. Wen, e S. F. Yang, "A power system transient stability analysis based on MATLAB", in *2014 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)*, Hong Kong, dez. 2014, p. 1–4. doi: 10.1109/APPEEC.2014.7066021.

[14] F. M. Albatsh *et al.*, "A Comparative analysis of line stability indices for dynamic voltage stability", in 2017 International Conference on Engineering Technology and Technopreneurship (ICE2T), Kuala Lumpur, set. 2017, p. 1–6. doi: 10.1109/ICE2T.2017.8215949.

[15] A. Raab, G. Mehlmann, M. Luther, T. Sennewald, S. Schlegel, e D. Westermann, "Steady-State and Dynamic Security Assessment for System Operation", in 2021 International Conference on Smart Energy Systems and Technologies (SEST), Vaasa, Finland, set. 2021, p. 1–6. doi: 10.1109/SEST50973.2021.9543423.

[16] A. Xue *et al.*, "A New Quantitative Analysis Method for Overvoltage in Sending End Electric Power System With UHVDC", *IEEE Access*, vol. 8, p. 145898–145908, 2020, doi: 10.1109/ACCESS.2020.3015267.

[17] T. Machabe, E. De Mello Koch, e K. Nixon, "A Review of Power System Instability Prediction Methods Using Phasor Measurement Unit Data", in 2020 International SAUPEC/RobMech/PRASA Conference, Cape Town, South Africa, jan. 2020, p. 1–6. doi: 10.1109/SAUPEC/RobMech/PRASA48453.2020.9041084.

[18] N. Amjady, "Dynamic voltage security assessment by a neural network based method", *Electr. Power Syst. Res.*, vol. 66, n^o 3, p. 215–226, set. 2003, doi: 10.1016/S0378-7796(03)00048-8.

[19] A. D. P. Lotufo, M. L. M. Lopes, e C. R. Minussi, "Sensitivity analysis by neural networks applied to power systems transient stability", *Electr. Power Syst. Res.*, vol. 77, n^o 7, p. 730–738, maio 2007, doi: 10.1016/j.epsr.2005.09.020.

[20] H. Sawhney e B. Jeyasurya, "A feed-forward artificial neural network with enhanced feature selection for power system transient stability assessment", *Electr. Power Syst. Res.*, vol. 76, n° 12, p. 1047–1054, ago. 2006, doi: 10.1016/j.epsr.2005.12.026.

[21] O. A. Alimi, K. Ouahada, e A. M. Abu-Mahfouz, "A Review of Machine Learning Approaches to Power System Security and Stability", *IEEE Access*, vol. 8, p. 113512–113531, 2020, doi: 10.1109/ACCESS.2020.3003568.

[22] F. Aydin e B. Gumus, "Study of Different ANN Algorithms for Voltage Stability Analysis", in *2020 Innovations in Intelligent Systems and Applications Conference (ASYU)*, Istanbul, Turkey, out. 2020, p. 1–5. doi: 10.1109/ASYU50717.2020.9259817.

[23] E. R. B. Calma e M. C. Pacis, "Artificial Neural Network-based Voltage Stability Analysis of Power Transmission Networks with Distributed Generation using Phasor Measurement Unit Synthetic Data", in 2021 IEEE 12th Control and System Graduate Research Colloquium (ICSGRC), Shah Alam, Malaysia, ago. 2021, p. 1–6. doi: 10.1109/ICSGRC53186.2021.9515237.

[24] H. Hagmar, L. Tong, R. Eriksson, e L. A. Tuan, "Voltage Instability Prediction Using a Deep Recurrent Neural Network", *IEEE Trans. Power Syst.*, vol. 36, nº 1, p. 17–27, jan. 2021, doi: 10.1109/TPWRS.2020.3008801.

[25] V. Veerasamy *et al.*, "Recurrent network based power flow solution for voltage stability assessment and improvement with distributed energy sources", *Appl. Energy*, vol. 302, p. 117524, nov. 2021, doi: 10.1016/j.apenergy.2021.117524.

[26] C. Subramani, A. A. Jimoh, S. H. Kiran, e S. S. Dash, "Artificial neural network based voltage stability analysis in power system", in *2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT)*, Nagercoil, India, mar. 2016, p. 1–4. doi: 10.1109/ICCPCT.2016.7530255.

[27] F. M. Shahir e P. S. Shirazi, "Monitoring of Voltage Stability Margin by Artificial Neural Network", in *2020 IEEE-HYDCON*, Hyderabad, India, set. 2020, p. 1–4. doi: 10.1109/HYDCON48903.2020.9242707.

[28] A. K. Samy e A. Venkadesan, "Online Assessment of Voltage Stability Region using an Artificial Neural Network", in 2021 5th International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques (ICEECCOT), Mysuru, India, dez. 2021, p. 757–761. doi: 10.1109/ICEECCOT52851.2021.9708047.

[29] M. Ramirez-Gonzalez, F. R. Segundo Sevilla, e P. Korba, "Convolutional neural network based approach for static security assessment of power systems", in *2021 World Automation Congress (WAC)*, Taipei, Taiwan, ago. 2021, p. 106–110. doi: 10.23919/WAC50355.2021.9559458.

[30] N. P. Tanpaniya e V. B. Pandya, "A Comparative Study on Static Voltage Stability Analysis of Power System using Feed Forward Neural Network and Radial Basis Function Neural Network with Reduced Set of Inputs", in *2021 2nd International Conference for Emerging Technology (INCET)*, Belagavi, India, maio 2021, p. 1–7. doi: 10.1109/INCET51464.2021.9456149.

[31] P. Kundur, N. J. Balu, e M. G. Lauby, *Power system stability and control*. New York San Francisco Washington [etc.]: McGraw-Hill, 1994.

[32] K. R. Padiyar e I. ebrary, *Power system dynamics stability and control*. Hyderabad [India: BS Publications, 2008.

[33] "Definition and Classification of Power System Stability IEEE/CIGRE Joint Task Force on Stability Terms and Definitions", *IEEE Trans. Power Syst.*, vol. 19, n° 3, p. 1387– 1401, ago. 2004, doi: 10.1109/TPWRS.2004.825981.

[34] M. C. Passaro, "Controle Preventivo de Estabilidade através de Sensibilidade baseada em Redes Neurais", Tese, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2013.

[35] A. A. Nohara, T. M. L. Assis, e T. M. Valentini, "Avaliação da Estabilidade Transitória de Sistemas de Energia Elétrica através de um Sistema Neuro-Fuzzy", p. 12, 2009.

[36] "ONS - Operador Nacional do Sistema Elétrico", *Procedimentos de Rede*. http://ons.org.br:80/paginas/sobre-o-ons/procedimentos-de-rede/vigentes (acessado 20 de janeiro de 2022).

[37] "ANAREDE - Análise de Redes Elétricas". http://srvlumis02.cepel.br/pt_br/produtos/programas-computacionais-por-

categoria/menu/anarede-analise-de-redes-eletricas.htm (acessado 20 de janeiro de 2022).

[38] "ANATEM - Análise de Transitórios Eletromecânicos". http://srvlumis02.cepel.br/pt_br/produtos/programas-computacionais-por-

categoria/menu/anatem-analise-de-transitorios-eletromecanicos.htm (acessado 20 de janeiro de 2022).

[39] C. A. Neto *et al.*, "Utilização da Ferramenta Organon nos Processos do ONS", nº XXI SNPTEE 2011, p. 9, out. 2011.

[40] M. A. Quadros, C. A. da S. Neto, G. Pires, e M. dos S. Moreale, "Aplicação da Avaliação Dinâmica e Estática do SIN nos Centros de Operação do ONS", *EDAO*, nº X EDAO, p. 10, nov. 2008.

[41] ONS, "Conceitos e entendimento da Região de Segurança para uso em Tempo Real".14 de fevereiro de 2020. Acessado: 11 de dezembro de 2021. [Online]. Disponível em:

http://www.ons.org.br/%2FMPO%2FDocumento%20Normativo%2F7.%20Refer%C3%A Ancias%20T%C3%A9cnicas%2F7.2.%20Controle%20da%20Transmiss%C3%A3o%2FR T-CT.BR.01_Rev.00.pdf

[42] ONS, "Premissas, critérios e metodologia para estudos elétricos". 2 de julho de 2021.
Acessado: 21 de janeiro de 2022. [Online]. Disponível em: http://apps08.ons.org.br/ONS.Sintegre.Proxy/ecmprsite/ecmfragmentsdocuments/Subm%C
3%B3dulo%202.3-CR_2021.06.pdf

[43] S. Haykin, Redes Neurais - Princípios e Práticas. São Paulo: Bookman, 2000.

[44] I. N. Da Silva, D. H. Spatti, e R. A. Flausino, Redes Neurais Artificiais para Engenharia e Ciencias Aplicadas Fundamentos Teóricos e Aspectos Práticos, 2º ed. São Paulo: Artliber, 2016.

[45] H. L. M. do Amaral, "Desenvolvimento de uma Nova Metodologia para a Previsão do Consumo de Energia Elétrica de Curto Prazo Utilizando Redes Neurais Artificiais e Decomposição de Séries Temporais", Tese, USP, São Paulo, 2019.

[46] V. H. Ferreira, "Desenvolvimento de Modelos Neurais Autônomos para a Previsão de Carga Elétrica", Teses, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2008.

[47] R. P. Martins, "Previsão Probabilística de Energia Solar Utilizando Redes Neurais Com Inferências Bayesianas E Misturas Gaussianas", Dissertação, Universidade Federal Fluminense, Niterói, 2018.

[48] D. A. M. Barbosa, "Analytics e Marchine Learning para a Previsão Automática de Carga Horária e Semanal", Dissertação, Universidade Federal Fluminense, Niterói, 2020.

[49] J. Brownlee, *Deep Learning With Python: Develop Deep Learning Models on Theano and TensorFlow Using Keras*, vol. 1.15. Austrália: Machine Learning Mastery, 2018.

[50] C. M. Bishop, Pattern Recognition and Machine Learning. New York: Springer, 2011.

[51] Z. Cataltepe, Y. S. Abu-Mostafa, e M. Magdon-Ismail, "No Free Lunch for Early Stopping", *Neural Comput.*, vol. 11, n° 4, p. 995–1009, maio 1999, doi: 10.1162/089976699300016557.

[52] B. Efron e R. Tibshirani, *An introduction to the bootstrap*. New York: Chapman & Hall, 1993.

[53] MacKay, David J.C., "Bayesian methods for adaptive models", California Institute of Technology, 2007. doi: 10.7907/H3A1-WM07.

[54] T. Hong, P. Pinson, S. Fan, H. Zareipour, A. Troccoli, e R. J. Hyndman, "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond", *Int. J. Forecast.*, vol. 32, n° 3, p. 896–913, jul. 2016, doi: 10.1016/j.ijforecast.2016.02.001.

[55] B. M. Wilamowski e Hao Yu, "Improved Computation for Levenberg–Marquardt Training", *IEEE Trans. Neural Netw.*, vol. 21, n° 6, p. 930–937, jun. 2010, doi: 10.1109/TNN.2010.2045657.

[56] I. Sadeghkhani, A. Ketabi, e R. Feuillet, "Estimation of Temporary Overvoltages during Power System Restoration using Artificial Neural Network", in 2009 15th International Conference on Intelligent System Applications to Power Systems, Curitiba, nov. 2009, p. 1–6. doi: 10.1109/ISAP.2009.5352836.

[57] J. Arif, N. Ray Chaudhuri, S. Ray, e B. Chaudhuri, "Online Levenberg-Marquardt algorithm for neural network based estimation and control of power systems", in 2009 *International Joint Conference on Neural Networks*, Atlanta, Ga, USA, jun. 2009, p. 199–206. doi: 10.1109/IJCNN.2009.5179071.

[58] S. Varshney, L. Srivastava, e M. Pandit, "ANN based integrated security assessment of power system using parallel computing", *Int. J. Electr. Power Energy Syst.*, vol. 42, nº 1, p. 49–59, nov. 2012, doi: 10.1016/j.ijepes.2012.03.016.

[59] T. Abreu, M. Paredes, K. A. M. Araujo, M. L. M. Lopes, e A. D. P. Lotufo, "Previsão de Cargas Elétricas através de um Modelo Híbrido de Regressão com Redes Neurais Artificiais", *SBSE*, p. 6, maio 2012.

[60] A. da C. Queiroz, "Metodologia de extração automática de características da mão para a estimação da idade óssea utilizando redes neurais artificiais no processo de decisão", Dissertação, Universidade de São Paulo, São Paulo, 2016.

[61] T. Richter, "Arquitetura de sistema inteligente para sensoriamento virtual de oxigênio em veículos bicombustíveis com injeção eletrônica", Dissertação, Universidade de São Paulo, São Paulo, 2009.

[62] P. Burman, "A Comparative Study of Ordinary Cross-Validation, v-Fold Cross-Validation and the Repeated Learning-Testing Methods", *Biometrika*, vol. 76, n^o 3, p. 503, set. 1989, doi: 10.2307/2336116.

[63] S. Borra e A. Di Ciaccio, "Measuring the Prediction Error. A Comparison of Cross-Validation, Bootstrap and Covariance Penalty Methods", *Comput. Stat. Data Anal.*, vol. 54, nº 12, p. 2976–2989, dez. 2010, doi: 10.1016/j.csda.2010.03.004. [64] J. P. Z. Cunha, "Um Estudo Comparativo das Técnicas de Validação Cruzada Apliacadas a Modelos Mistos", Dissertação, Universidade de São Paulo, São Paulo, 2019.

[65] J.-H. Kim, "Estimating Classification Error Rate: Repeated Cross-Validation, Repeated Hold-Out and Bootstrap", *Comput. Stat. Data Anal.*, vol. 53, n° 11, p. 3735–3745, set. 2009, doi: 10.1016/j.csda.2009.04.009.

[66] M. V. Loeff, "Deteção de divergências entre o processo e o modelo utilizado no controlador preditivo.", Mestrado em Engenharia de Sistemas, Universidade de São Paulo, São Paulo, 2014. doi: 10.11606/D.3.2014.tde-28042015-111541.

[67] P. A. Morettin e W. de O. Bussab, *Estatística Básica*, 6º ed. São Paulo: Saraiva, 2010.
[68] B. R. dos Santos, "Modelos de regressão quantílica", Mestrado em Estatística, Universidade de São Paulo, São Paulo, 2012. doi: 10.11606/D.45.2012.tde-12042012-154333.

[69] A. de S. Chiode, "Avaliação de propostas de coeficientes de determinação do tipo R² em modelos de regressão logística com resposta nominal", Mestrado em Estatística, Universidade de São Paulo, São Paulo, 2021. doi: 10.11606/D.45.2021.tde-07042021-004407.

Anexo

Tabela 4 - Resultado do Modelo utilizando o algoritmo de treinamento B	Jayesiano –
Teste	

Treinamento Bayesiano											
		г	Introdog				S	aídas			
		ľ	LITTAGAS			STB	LDX	VVIO		TVIO	
DIR	CTG	DIST	G1	G2	G3	PREV	VER	PREV	VER	PREV	VER
1	1	0,00	2811,45	3886,55	7737,93	0,985	0,992	-0,044	-0,040	92,954	92,816
1	1	1574,65	4186,20	3118,72	7131,01	0,982	0,993	-0,035	-0,042	92,725	92,770
1	1	2025,54	4579,85	2898,85	6957,22	0,988	0,993	-0,033	-0,038	92,658	92,758
1	1	2700,79	5169,38	2569,58	6696,96	0,999	0,994	-0,029	-0,043	92,591	92,735
1	1	4712,41	6925,64	1588,67	5921,62	0,988	0,994	-0,017	-0,011	92,826	92,666
1	1	4937,63	7122,27	1478,85	5834,81	0,988	0,994	-0,016	-0,017	92,906	92,657
1	1	5380,83	7509,21	1262,74	5663,98	0,986	0,993	-0,013	-0,021	93,103	92,639
1	1	5598,18	7698,96	1156,75	5580,21	0,986	0,994	-0,012	-0,021	93,224	92,631
1	2	2700,79	5169,38	2569,58	6696,96	0,975	0,987	-0,022	-0,036	92,022	92,325
1	2	4712,41	6925,64	1588,67	5921,62	0,978	0,984	-0,011	-0,003	92,406	92,322
1	3	899,06	3596,38	3448,14	7391,40	0,832	0,900	-0,025	-0,032	92,344	92,151
1	3	3148,25	5560,04	2351,39	6524,49	0,766	0,914	-0,015	-0,020	92,491	92,143
1	3	3814,75	6141,93	2026,39	6267,60	0,730	0,250	-0,013	-0,005	92,577	92,255
1	3	5380,83	7509,21	1262,74	5663,98	0,595	0,107	-0,007	-0,008	92,608	92,245
1	3	5816,51	7889,58	1050,29	5496,06	1,010	0,872	-0,005	-0,002	92,574	92,251
1	4	1124,13	3792,88	3338,40	7304,65	0,590	0,661	-0,022	-0,031	93,924	93,392
1	4	1349,32	3989,48	3228,59	7217,86	0,620	0,673	-0,022	-0,032	93,563	93,037
1	4	2475,40	4972,61	2679,49	6783,83	0,700	0,741	-0,019	-0,028	92,238	91,605
1	4	3370,80	5754,34	2242,87	6438,72	0,726	0,707	-0,018	-0,022	91,973	91,737
1	4	4265,41	6535,38	1806,64	6093,90	0,912	0,684	-0,016	-0,005	90,645	91,873
1	4	4490,24	6731,67	1697,01	6007,25	0,905	0,846	-0,015	-0,009	77,446	91,816
1	5	224,51	3007,46	3777,07	7651,40	1,007	0,995	-0,054	-0,037	91,231	92,610
1	5	3370,80	5754,34	2242,87	6438,72	0,824	0,995	-0,017	-0,023	91,946	92,605
1	5	4265,41	6535,38	1806,64	6093,90	1,229	0,994	-0,025	-0,009	92,237	92,600
1	5	4712,41	6925,64	1588,67	5921,62	0,962	0,993	-0,027	-0,005	92,735	92,603
1	5	5380,83	7509,21	1262,74	5663,98	1,096	0,993	-0,006	-0,016	94,835	92,605
1	6	1124,13	3792,88	3338,40	7304,65	0,364	0,467	-0,017	-0,010	91,780	92,224
1	6	1574,65	4186,20	3118,72	7131,01	0,153	0,224	0,001	-0,004	91,685	91,985
2	1	1411,01	4215,58	3747,40	6472,94	0,985	0,993	-0,028	-0,032	93,824	94,280
2	1	1637,52	4440,99	3725,06	6269,88	0,985	0,992	-0,025	-0,023	94,195	94,802
2	1	2568,41	5367,34	3633,26	5435,33	0,985	0,993	-0,014	-0,002	96,273	96,065
2	2	237,03	3047,32	3863,17	7525,43	0,980	0,951	-0,034	-0,027	80,507	92,271
2	2	2568,41	5367,34	3633,26	5435,33	0,914	0,947	-0,005	-0,004	95,134	95,323
2	3	711,35	3519,33	3816,40	7100,20	0,670	0,817	-0,022	-0,026	92,610	92,139
2	3	947,47	3754,31	3793,11	6888,51	0,665	0,906	-0,019	-0,023	92,998	92,146
2	3	2319,45	5119,59	3657,81	5658,52	0,705	0,912	0,001	-0,012	95,449	95,181

				001010		0.404	0.400	0.001	0.001		0
2	4	237,03	3047,32	3863,17	7525,43	0,481	0,428	-0,021	-0,024	95,242	95,366
2	4	1411,01	4215,58	3747,40	6472,94	0,338	0,235	-0,005	-0,015	97,558	97,549
2	4	1637,52	4440,99	3725,06	6269,88	0,248	0,189	0,001	-0,011	97,448	98,121
2	4	1868,64	4670,98	3702,27	6062,68	0,219	0,181	0,008	-0,003	98,012	98,337
2	5	237,03	3047,32	3863,17	7525,43	0,980	0,995	-0,041	-0,036	91,492	92,613
2	5	1182,19	3987,88	3769,96	6678,08	1,064	0,995	-0,014	-0,033	92,808	92,609
2	5	1411,01	4215,58	3747,40	6472,94	1,039	0,995	-0,010	-0,029	92,955	92,610
2	5	2090,87	4892,13	3680,35	5863,45	1,080	0,993	-0,041	-0,014	93,976	93,529
2	5	2534,28	5333,38	3636,63	5465,93	0,927	0,993	-0,020	0,006	95,443	95,202
2	6	711,35	3519,33	3816,40	7100,20	-0,103	0,196	0,038	-0,001	92,405	92,075
3	2	235,52	3033,02	3966,39	7436,52	0,994	0,968	-0,033	-0,023	91,304	92,260
3	2	1569,69	4288,20	4418,66	5729,07	0,973	1,000	-0,008	-0,008	96,384	97,030
3	3	701,75	3471,65	4124,43	6839,85	0,831	0,799	-0,018	-0,020	93,403	93,090
3	3	1569,69	4288,20	4418,66	5729,07	0,790	0,892	0,000	-0,008	91,454	97,736
3	4	235,52	3033,02	3966,39	7436,52	0,408	0,463	-0,019	-0,023	95,923	96,015
3	4	701,75	3471,65	4124,43	6839,85	0,239	0,222	-0,013	-0,020	98,061	98,166
3	4	1777,29	4483,51	4489,03	5463,39	-0,063	0,020	0,037	0,065	101,943	101,458
3	5	701,75	3471,65	4124,43	6839,85	0,961	0,995	-0,025	-0,027	93,159	92,618
4	1	478,78	3181,72	4190,07	7064,14	0,985	0,994	-0,034	-0,033	93,678	93,948
4	2	1374,24	3874,24	4757,77	5803,92	0,984	1,000	-0,007	-0,010	97,642	98,135
4	3	239,82	2996,92	4038,58	7400,43	0,874	0,826	-0,024	-0,025	92,405	92,170
4	3	478,78	3181,72	4190,07	7064,14	0,845	0,812	-0,020	-0,023	93,070	92,683
4	3	1142,27	3694,84	4610,71	6130,38	0,646	0,670	-0,007	-0,009	90,187	97,291
4	3	1666,93	4100,59	4943,32	5392,01	0,055	0,858	0.007	0.036	102,787	101,685
4	4	239,82	2996,92	4038,58	7400,43	0,362	0,407	-0,018	-0,022	96,363	96,414
4	4	1374,24	3874,24	4757,77	5803,92	0,664	0,012	0.038	0,069	101,206	101,813
4	5	478,78	3181,72	4190.07	7064,14	0,948	0,995	-0,035	-0,030	92,327	92,618
4	5	1666.93	4100.59	4943.32	5392.01	2,066	0.993	0.115	0.019	99.802	100.760
4	6	0.00	2811.45	3886.55	7737.93	0.773	0.754	-0.001	-0.022	92.307	92,430
4	6	478.78	3181.72	4190.07	7064.14	0.420	0.160	0.022	0.000	93.253	92,934
5	1	1106.23	3492.77	4758.07	6185.09	0.984	0.991	-0.018	-0.019	97.313	97.369
5	2	0.00	2811.45	3886.55	7737.93	1.001	0.951	-0.037	-0.027	92.544	92.272
5	2	208.95	2940.14	4051.17	7444.62	0.998	0.965	-0.032	-0.022	90.342	92.250
5	2	416.79	3068.15	4214.91	7152.87	0.995	0.966	-0.027	-0.019	92.669	92.231
5	2	621.32	3194.12	4376.05	6865.76	0.991	0.964	-0.022	-0.015	93.056	92,975
5	2	1106.23	3492.77	4758.07	6185.09	0.985	1 000	-0.011	-0.004	96 113	96 636
5	3	0.00	2811 45	3886 55	7737.93	0.819	0.844	-0.028	-0.029	91 998	92 140
5	3	208.95	2940 14	4051 17	7444 62	0.910	0.828	-0.024	-0.026	92.437	92,110
5	3	416 79	3068.15	4214 91	7152.87	0.860	0.818	-0.020	-0.023	92,137	92 572
5	3	621.32	3194 12	4376.05	6865.76	0.838	0,010	-0.016	-0.019	93 626	93 884
5	3	867.34	3345 63	4569.86	6520 /3	0.735	0.80/	-0.011	-0.015	95 316	95 705
5	3	1106 22	3407 77	4758 07	6185.00	0,755	0,094	-0.007	-0.012	92 / 70	97 503
5	1	0.00	2811 45	3886 55	7737 02	0,020	0.450	-0,007	-0,012	94 650	0/ 017
5		416 70	2011,45	4214 01	7157.95	0,314	0.7/1	-0.014	-0,024	07 699	07 756
5	-+ _/	867.24	3345 62	4560.86	6520 42	0,230	0.062	0,014	0.019	100 757	100 610
5	4	200 05	2040 14	4051 17	7444 40	0,002	0,003	0,000	0.010	02 600	02 277
5	U	200,93	2740,14	4031,17	7444,02	0,332	0,550	-0,038	-0,014	92,090	74,411

6	2	959,21	3296,59	4714,02	6425,32	0,984	1,000	-0,014	-0,006	95,026	95,692
6	3	492,30	3060,44	4311,24	7064,24	0,860	0,814	-0,017	-0,021	93,184	93,132
6	4	959,21	3296,59	4714,02	6425,32	-0,036	0,036	0,017	0,027	101,414	101,111
6	5	1401,71	3520,39	5095,76	5819,78	1,058	0,993	0,104	-0,017	97,570	98,690
6	6	731,27	3181,30	4517,39	6737,23	1,182	0,991	0,089	-0,008	94,685	94,431
7	1	1148,91	3229,66	4956,63	6249,63	0,984	0,988	-0,016	-0,017	97,369	97,687
7	2	235,88	2897,31	4106,24	7432,37	0,999	0,965	-0,031	-0,022	91,480	92,244
7	3	929,29	3149,72	4752,09	6534,12	0,794	0,769	-0,005	-0,014	110,473	96,356
7	4	0,00	2811,45	3886,55	7737,93	0,509	0,459	-0,019	-0,024	94,646	94,912
7	4	1148,91	3229,66	4956,63	6249,63	0,081	0,018	0,027	0,042	101,928	102,091
7	5	701,94	3066,96	4540,33	6828,64	0,979	0,995	-0,024	-0,023	93,037	93,150
7	5	1148,91	3229,66	4956,63	6249,63	0,886	0,995	-0,110	-0,014	95,548	96,607
7	6	235,88	2897,31	4106,24	7432,37	0,514	0,563	-0,012	-0,013	92,845	92,263
7	6	701,94	3066,96	4540,33	6828,64	1,148	0,899	0,106	0,008	94,163	94,530
8	1	0,00	2811,45	3886,55	7737,93	0,989	0,992	-0,044	-0,040	93,069	92,816
8	1	689,88	2943,72	4563,63	6928,58	0,983	0,992	-0,027	-0,027	95,245	95,022
8	1	1801,42	3156,84	5654,55	5624,54	0,985	0,981	-0,002	-0,007	99,623	100,281
8	2	1353,47	3070,95	5214,91	6150,07	0,967	0,989	-0,003	-0,005	98,671	98,265
8	2	1565,34	3111,57	5422,85	5901,51	0,973	0,988	0,000	-0,001	99,889	99,970
8	2	1920,32	3179,63	5771,24	5485,05	1,004	0,987	-0,005	-0,008	102,301	102,514
8	3	914,21	2986,73	4783,79	6665,40	0,794	0,783	-0,004	-0,016	99,921	95,971
8	3	1801,42	3156,84	5654,55	5624,54	0,961	0,694	-0,011	0,014	102,600	102,813
8	4	0,00	2811,45	3886,55	7737,93	0,507	0,459	-0,023	-0,024	94,638	94,912
8	4	1683,38	3134,20	5538,70	5763,03	0,018	0,003	0,190	0,146	118,589	103,492
8	4	1801,42	3156,84	5654,55	5624,54	-1,974	- 1,900	0,489	0,573	204,625	151,098
8	5	230,38	2855,62	4112,66	7467,65	0,948	0,995	-0,037	-0,032	93,090	92,619
8	5	1565,34	3111,57	5422,85	5901,51	2,105	0,993	-0,353	-0,014	98,502	99,307
8	6	1022,81	3007,55	4890,38	6537,99	0,857	0,991	-0,246	0,136	98,055	97,552
8	6	1131,42	3028,38	4996,97	6410,58	-1,791	- 1,900	0,986	0,950	98,612	96,806
9	1	1816,09	2811,45	5702,63	5921,84	0,976	0,981	-0,005	-0,010	99,398	99,288
9	1	2261,79	2811,45	6148,34	5476,14	0,982	0,977	-0,033	0,012	102,028	102,063
9	1	2362,38	2811,45	6248,93	5375,55	0,987	0,981	-0,050	0,001	102,827	102,239
9	2	232,02	2811,45	4118,57	7505,91	0,992	0,967	-0,029	-0,022	90,476	92,239
9	2	464,22	2811,45	4350,77	7273,71	0,968	0,966	-0,024	-0,018	92,491	92,228
9	3	0,00	2811,45	3886,55	7737,93	0,824	0,844	-0,027	-0,029	92,185	92,140
9	3	695,37	2811,45	4581,92	7042,56	0,746	0,800	-0,017	-0,020	91,123	94,155
9	3	1150,83	2811,45	5037,38	6587,10	0,722	0,775	-0,005	-0,014	97,519	97,174
9	3	2059,68	2811,45	5946,22	5678,25	0,591	0,698	0,048	0,006	102,325	103,364
9	4	1371,49	2811,45	5258,04	6366,44	0,125	0,013	-0,002	0,060	104,649	102,694
9					7070 71	1 007	0.005	-0.037	-0.028	93.006	92 625
	5	464,22	2811,45	4350,77	/2/3,/1	1,007	0,995	0,007	0,020	75,000	12,025
9	5 5	464,22 1150,83	2811,45 2811,45	4350,77 5037,38	6587,10	1,128	0,995	-0,044	-0,018	95,380	95,548
9 9	5 5 5	464,22 1150,83 2362,38	2811,45 2811,45 2811,45	4350,77 5037,38 6248,93	7273,71 6587,10 5375,55	1,007 1,128 1,051	0,995 0,995 0,993	-0,044 -0,058	-0,018 -0,001	95,380 103,918	95,548 104,721
9 9 10	5 5 5 1	464,22 1150,83 2362,38 695,37	2811,45 2811,45 2811,45 2811,45	4350,77 5037,38 6248,93 4581,92	7273,71 6587,10 5375,55 7042,56	1,007 1,128 1,051 0,982	0,995 0,995 0,993 0,993	-0,044 -0,058 -0,025	-0,018 -0,001 -0,028	95,380 95,380 103,918 95,208	95,548 104,721 94,824
9 9 10 10	5 5 5 1 1	464,22 1150,83 2362,38 695,37 1150,83	2811,45 2811,45 2811,45 2811,45 2811,45	4350,77 5037,38 6248,93 4581,92 5037,38	7273,71 6587,10 5375,55 7042,56 6587,10	1,007 1,128 1,051 0,982 0,980	0,995 0,995 0,993 0,993 0,991	-0,044 -0,058 -0,025 -0,015	-0,018 -0,001 -0,028 -0,020	95,380 103,918 95,208 97,135	95,548 104,721 94,824 96,829

10	1	2261,79	2811,45	6148,34	5476,14	0,984	0,977	-0,006	0,012	101,939	102,063
10	1	2362,38	2811,45	6248,93	5375,55	0,989	0,981	-0,015	0,001	102,740	102,239
10	2	0,00	2811,45	3886,55	7737,93	1,012	0,951	-0,030	-0,027	92,332	92,272
10	2	1599,87	2811,45	5486,42	6138,06	0,922	0,988	-0,001	0,000	99,481	99,389
10	3	923,02	2811,45	4809,57	6814,91	0,761	0,788	-0,018	-0,016	96,265	95,697
10	3	1150,83	2811,45	5037,38	6587,10	0,739	0,775	-0,010	-0,014	97,343	97,174
10	4	1599,87	2811,45	5486,42	6138,06	0,212	0,006	0,097	0,070	102,468	103,712
10	4	1937,56	2811,45	5824,11	5800,37	-2,014	- 1,900	0,610	0,646	165,373	165,538
10	5	1371,49	2811,45	5258,04	6366,44	0,913	0,995	-0,015	-0,018	96,572	97,077
10	5	2261,79	2811,45	6148,34	5476,14	0,930	0,993	0,046	0,011	102,415	104,472
10	6	1150,83	2811,45	5037,38	6587,10	0,765	0,730	-0,043	-0,015	97,100	96,740
10	6	1288,74	2811,45	5175,29	6449,19	-0,061	0,631	0,360	0,176	96,498	97,269
11	1	923,02	2811,45	4809,57	6814,91	0,981	0,992	-0,019	-0,023	96,395	95,842
11	1	1371,49	2811,45	5258,04	6366,44	0,980	0,987	-0,011	-0,020	97,825	97,931
11	1	1599,87	2811,45	5486,42	6138,06	0,979	0,985	-0,007	-0,015	98,538	98,789
11	2	232,02	2811,45	4118,57	7505,91	1,001	0,967	-0,027	-0,022	90,640	92,239
11	2	1371,49	2811,45	5258,04	6366,44	0,934	0,989	-0,013	-0,005	98,181	97,729
11	2	2059,68	2811,45	5946,22	5678,25	0,959	0,987	0,008	0,001	103,148	102,945
11	4	923,02	2811,45	4809,57	6814,91	-0,051	0,052	-0,018	0,002	100,750	101,075
11	4	1150,83	2811,45	5037,38	6587,10	-0,031	0,025	-0,004	0,023	103,526	102,011
11	5	0,00	2811,45	3886,55	7737,93	0,970	0,995	-0,035	-0,036	92,426	92,611
11	6	923,02	2811,45	4809,57	6814,91	0,651	0,873	0,048	0,011	94,018	95,527
11	6	1261,16	2811,45	5147,71	6476,77	0,218	0,660	0,148	0,015	97,113	96,873
11	6	1288,74	2811,45	5175,29	6449,19	-0,107	0,631	0,400	0,176	97,083	97,269
12	1	0,00	2811,45	3886,55	7737,93	0,991	0,992	-0,028	-0,040	93,044	92,816
12	2	0,00	2811,45	3886,55	7737,93	1,005	0,951	-0,031	-0,027	92,200	92,272
12	3	691,72	2810,45	3194,82	8430,66	0,970	0,907	-0,031	-0,026	92,350	92,072
12	4	230,80	2811,12	3655,75	7969,07	0,667	0,620	-0,019	-0,025	93,690	93,548
12	4	691,72	2810,45	3194,82	8430,66	0,663	0,809	-0,018	0,013	92,426	91,092
13	1	0,00	2811,45	3886,55	7737,93	0,992	0,992	-0,030	-0,040	93,022	92,816
13	1	1150,88	2811,45	2735,66	8888,81	0,988	0,992	-0,049	-0,043	92,498	92,765
13	1	2293,39	2811,45	1593,16	10031,32	0,984	0,991	-0,050	-0,056	92,679	92,633
13	1	3197,75	2811,45	688,80	10935,68	0,984	0,987	-0,051	-0,059	92,705	92,452
13	1	3647,62	2811,45	238,93	11385,55	0,984	0,980	-0,052	-0,056	92,277	92,316
13	2	461,51	2811,45	3425,04	8199,44	0,942	0,957	-0,038	-0,033	92,440	92,300
13	2	1609,13	2811,45	2277,42	9347,06	0,989	0,989	-0,040	-0,039	92,915	92,325
13	2	1837,68	2811,45	2048,87	9575,61	0,987	0,988	-0,040	-0,040	92,831	92,336
13	2	3422,83	2811,45	463,72	11160,76	0,984	0,978	-0,045	-0,048	91,945	92,467
13	3	230,86	2811,45	3655,69	7968,79	0,819	0,905	-0,028	-0,030	92,300	92,149
13	3	1150,88	2811,45	2735,66	8888,81	0,924	0,913	-0,029	-0,031	92,007	92,037
13	4	0,00	2811,45	3886,55	7737,93	0,511	0,459	-0,019	-0,024	94,494	94,912
13	4	1380,16	2811,45	2506,39	9118,09	0,857	0,893	-0,016	0,007	91,636	91,109
13	5	691,87	2811,45	3194,68	8429,80	1,032	0,995	-0,036	-0,043	92,698	92,612
13	5	1150,88	2811,45	2735,66	8888,81	1,006	0,995	-0,034	-0,040	92,360	92,615
13	5	1609,13	2811,45	2277,42	9347,06	0,953	0,996	-0,038	-0,044	92,372	92,617
13	5	2972,31	2811,45	914,24	10710,24	1,026	0,996	-0,065	-0,060	92,498	92,646
----	---	---------	---------	---------	----------	-------	-------	--------	--------	--------	--------
13	5	3871,89	2811,45	14,66	11609,82	1,210	0,996	-0,053	-0,060	92,167	92,646
13	6	230,86	2811,45	3655,69	7968,79	0,875	0,999	0,004	-0,024	92,526	92,439
13	6	691,87	2811,45	3194,68	8429,80	0,975	0,911	-0,053	-0,033	92,610	92,474
13	6	1609,13	2811,45	2277,42	9347,06	0,933	0,973	-0,033	-0,040	93,417	92,493
13	6	3871,89	2811,45	14,66	11609,82	1,163	0,991	0,013	-0,052	92,137	92,730
14	1	848,01	3157,78	3112,48	8165,67	1,022	0,993	-0,043	-0,047	92,748	92,786
14	1	1271,52	3330,74	2725,90	8379,29	1,009	0,992	-0,046	-0,043	92,741	92,759
14	1	1483,11	3417,15	2532,77	8486,01	0,995	0,992	-0,047	-0,044	92,749	92,744
14	1	1905,47	3589,65	2147,23	8699,05	0,986	0,992	-0,049	-0,047	92,759	92,710
14	1	3799,43	4363,14	418,42	9654,37	0,984	0,987	-0,054	-0,059	91,452	92,421
14	2	1059,80	3244,27	2919,16	8272,49	0,995	0,960	-0,038	-0,030	91,731	92,329
14	2	1271,52	3330,74	2725,90	8379,29	0,999	0,962	-0,038	-0,033	91,737	92,287
14	2	2959,29	4020,03	1185,30	9230,60	0,989	0,987	-0,041	-0,046	93,014	92,411
14	2	3799,43	4363,14	418,42	9654,37	0,986	0,981	-0,042	-0,049	92,805	92,452
14	2	4008,98	4448,72	227,14	9760,06	0,986	0,986	-0,042	-0,050	91,605	92,459
14	3	848,01	3157,78	3112,48	8165,67	0,952	0,907	-0,028	-0,033	92,282	92,097
14	3	1905,47	3589,65	2147,23	8699,05	0,809	0,911	-0,029	-0,033	91,892	92,048
14	3	2327,48	3761,99	1762,02	8911,91	0,828	0,914	-0,029	-0,036	91,599	92,024
14	3	2538,24	3848,07	1569,63	9018,22	0,848	0,915	-0,029	-0,041	91,447	92,020
14	3	3589,68	4277,48	609,88	9548,57	0,939	0,923	-0,030	-0,045	90,781	92,026
14	3	3799,43	4363,14	418,42	9654,37	0,950	0,924	-0,030	-0,046	90,660	92,023
14	4	424,20	2984,69	3499,34	7951,90	0,731	0,682	-0,017	-0,027	93,040	92,824
14	4	848,01	3157,78	3112,48	8165,67	0,761	0,810	-0,017	-0,031	91,792	91,410
14	4	1483,11	3417,15	2532,77	8486,01	0,808	0,850	-0,016	0,007	90,764	91,129
14	4	2327,48	3761,99	1762,02	8911,91	0,927	0,890	-0,016	0,001	90,947	91,120
14	4	2959,29	4020,03	1185,30	9230,60	0,928	0,900	-0,016	-0,003	91,138	91,046
14	4	3169,59	4105,92	993,34	9336,67	0,928	0,903	-0,016	-0,003	91,085	90,993
14	4	3589,68	4277,48	609,88	9548,57	0,921	0,907	-0,016	-0,004	90,812	90,976
14	4	4257,82	4550,35	0,00	9885,58	0,892	0,913	-0,015	-0,013	90,088	85,823
14	5	0,00	2811,45	3886,55	7737,93	0,929	0,995	-0,040	-0,036	92,390	92,611
14	5	2959,29	4020,03	1185,30	9230,60	0,983	0,996	-0,060	-0,057	92,555	92,633
14	5	4218,33	4534,22	36,05	9865,66	0,989	0,996	-0,029	-0,061	90,957	92,635
14	6	212,11	2898,08	3692,93	7844,92	0,744	0,991	0,003	-0,022	92,387	92,421
14	6	1694,42	3503,45	2339,88	8592,60	0,907	0,948	-0,026	-0,030	92,797	92,341
14	6	4257,82	4550,35	0,00	9885,58	1,028	0,956	-0,045	-0,014	92,011	86,934
15	1	1770,47	3992,24	2567,35	7876,33	1,028	0,994	-0,041	-0,043	92,693	92,741
15	1	2876,23	4729,72	1743,44	7962,77	0,987	0,992	-0,044	-0,050	92,846	92,668
15	1	3538,82	5171,63	1249,73	8014,57	0,985	0,992	-0,047	-0,053	92,912	92,600
15	1	3759,51	5318,82	1085,29	8031,82	0,985	0,992	-0,048	-0,053	92,912	92,576
15	1	4861,29	6053,64	264,34	8117,95	0,984	0,988	-0,050	-0,051	92,620	92,420
15	1	5081,26	6200,34	100,44	8135,14	0,984	0,985	-0,050	-0,051	92,485	92,383
15	1	5148,66	6245,30	50,22	8140,41	0,984	0,986	-0,050	-0,051	92,438	92,370
15	2	2212,94	4287,35	2237,66	7910,92	0,985	0,988	-0,036	-0,037	92,451	92,332
15	2	2655,20	4582,31	1908,13	7945,49	0,984	0,988	-0,037	-0,040	92,603	92,358
15	2	3097,18	4877,08	1578,81	7980,04	0,983	0,988	-0,039	-0,045	92,685	92,379

15	2	3318,04	5024,38	1414,24	7997,31	0,983	0,988	-0,041	-0,046	92,695	92,389
15	2	3759,51	5318,82	1085,29	8031,82	0,983	0,988	-0,044	-0,047	92,648	92,404
15	2	4641,18	5906,84	428,35	8100,74	0,982	0,981	-0,051	-0,044	92,367	92,421
15	2	5182,36	6267,77	25,11	8143,04	0,982	0,996	-0,056	-0,043	92,197	92,426
15	3	1327,83	3697.03	2897,17	7841,73	0,937	0,904	-0,024	-0,027	92,288	92,037
15	3	1770,47	3992,24	2567.35	7876.33	0,912	0,903	-0,024	-0,029	92,266	92,043
15	3	2876,23	4729,72	1743,44	7962,77	0,883	0,921	-0,025	-0,035	92,095	92,024
15	3	3097,18	4877,08	1578,81	7980.04	0,884	0,909	-0,025	-0,039	92,065	92,018
15	3	3538,82	5171,63	1249,73	8014,57	0,892	0,908	-0,026	-0,039	92,039	92,025
15	3	3759,51	5318,82	1085,29	8031,82	0,900	0,928	-0,027	-0,039	92,051	92,025
15	3	4861,29	6053,64	264,34	8117,95	0,958	0,934	-0,035	-0,037	91,725	92,027
15	4	221,32	2959,06	3721,64	7755,23	0,594	0,534	-0,018	-0,024	93,880	94,359
15	4	664,00	3254,30	3391,80	7789,84	0,743	0,664	-0,015	-0,029	92,852	92,725
15	4	1549,16	3844,65	2732,25	7859,03	0,770	0,821	-0,012	0,009	91,032	91,148
15	4	2212,94	4287,35	2237,66	7910,92	0,799	0,825	-0,010	0,005	90,240	91,155
15	4	4420,95	5759,96	592,45	8083,52	0,908	0,891	-0,005	-0,003	90,101	91,077
15	4	5081,26	6200,34	100,44	8135,14	0,841	0,919	-0,005	-0,004	91,786	91,116
15	4	5148,66	6245,30	50,22	8140,41	0,830	0,918	-0,005	-0,004	92,025	91,114
15	5	442,68	3106,69	3556,70	7772,53	1,002	0,995	-0,039	-0,037	91,661	92,610
15	5	3980.10	5465.94	920.93	8049.06	0.975	0.995	-0.048	-0.047	92.500	92.623
15	5	5148,66	6245,30	50,22	8140,41	1,002	0,995	-0,047	-0,045	92,414	92,619
15	6	221,32	2959,06	3721,64	7755,23	0,651	0,768	-0,010	-0,020	92,318	92,400
15	6	664,00	3254,30	3391.80	7789,84	0,650	0,805	-0,027	-0,018	92,159	92,343
15	6	885,25	3401,86	3226,94	7807,13	0,669	0,833	-0,028	-0,020	92,103	92,354
15	6	1991,73	4139,81	2402,49	7893,63	0,961	0,875	-0,018	-0,019	91,991	92,199
15	6	4200,58	5612,99	756,65	8066,30	0,869	0,937	-0,023	-0,019	92,148	92,182
16	1	985,01	3601,45	3298,21	7536,27	0,991	0,993	-0,038	-0,044	92,662	92,789
16	1	3701,28	5779,96	1675,80	6980,17	0,995	0,994	-0,029	-0,030	92,746	92,659
16	1	5184,04	6969,17	790,15	6676,61	0,985	0,992	-0,026	-0,028	92,541	92,545
16	1	5924,51	7563,04	347,87	6525,01	0,985	0,991	-0,024	-0,019	92,131	92,480
16	1	6506,93	8030,15	0,00	6405,78	0,985	0,939	-0,022	-0,025	91,652	93,780
16	2	0,00	2811,45	3886,55	7737,93	0,963	0,951	-0,034	-0,027	91,840	92,272
16	2	1478,18	3996,99	3003,64	7435,30	0,902	0,959	-0,030	-0,028	93,046	92,258
16	2	1971,76	4392,84	2708,83	7334,26	0,931	0,962	-0,030	-0,031	92,761	92,285
16	2	2218,67	4590,87	2561,35	7283,71	0,947	0,988	-0,030	-0,032	92,597	92,357
16	2	6506,93	8030,15	0,00	6405,78	0,973	0,973	-0,013	-0,016	92,179	93,553
16	3	0,00	2811,45	3886,55	7737,93	0,937	0,844	-0,027	-0,029	92,109	92,140
16	3	2712,74	4987,13	2266,25	7182,56	0,917	0,900	-0,018	-0,026	92,622	92,054
16	3	3701,28	5779,96	1675,80	6980,17	0,844	0,441	-0,022	-0,017	92,070	92,050
16	3	5430,97	7167,21	642,66	6626,06	0,826	0,905	-0,024	-0,013	92,463	92,183
16	3	5677,81	7365,18	495,22	6575,52	0,835	0,905	-0,020	-0,011	92,704	92,186
16	4	0,00	2811,45	3886,55	7737,93	0,542	0,459	-0,020	-0,024	94,309	94,912
16	4	492,27	3206,26	3592,52	7637,15	0,630	0,605	-0,015	-0,027	93,656	93,853
16	4	1231,54	3799,17	3150,96	7485,80	0,760	0,738	-0,010	-0,031	92,639	92,364
16	4	2465,67	4788,97	2413,82	7233,14	0,798	0,780	-0,001	0,007	91,095	91,205
16	4	4442,89	6374,74	1232,84	6828,35	0,923	0,900	0,006	-0,001	91,494	91,280

16	4	4690,10	6573,02	1085,18	6777,73	0,907	0,883	0,005	-0,001	91,578	91,313
16	4	5677,81	7365,18	495,22	6575,52	0,595	0,286	0,002	-0,002	101,720	91,459
16	5	1231,54	3799,17	3150,96	7485,80	1,011	0,995	-0,036	-0,041	92,709	92,605
16	5	1478,18	3996,99	3003,64	7435,30	1,018	0,995	-0,035	-0,035	92,784	92,607
16	5	4195,63	6176,44	1380,52	6878,97	0,909	0,995	-0,017	-0,019	92,665	92,608
16	5	6417,73	7958,61	53,28	6424,04	1,019	0,994	-0,020	-0,008	92,568	92,610
16	6	1478,18	3996,99	3003,64	7435,30	0,408	0,596	-0,004	-0,010	91,693	92,147
16	6	2959,86	5185,32	2118,64	7131,96	0,800	0,960	0,007	0,010	91,405	91,745
16	6	5801,16	7464,11	421,55	6550,27	0,494	- 1,900	0,812	0,143	117,667	129,236
16	6	5924,51	7563,04	347,87	6525,01	0,394	- 1,900	1,166	0,684	119,883	117,510

Tabela 5 - Resultado do Modelo utilizando o algoritmo de treinamento proposto por Levenberg-Marquardt - Teste

Treinamento proposto por Levenberg-Marquardt												
		т				Saídas						
		ľ	Intradas			STBI	LDX	VV	/IO	TV	ΊΟ	
DIR	CTG	DIST	G1	G2	G3	PREV	VER	PREV	VER	PREV	VER	
1	1	0,00	2811,45	3886,55	7737,93	0,984	0,992	-0,053	-0,040	92,831	92,816	
1	1	1574,65	4186,20	3118,72	7131,01	0,983	0,993	-0,043	-0,042	92,895	92,770	
1	1	2025,54	4579,85	2898,85	6957,22	0,983	0,993	-0,040	-0,038	92,862	92,758	
1	1	2700,79	5169,38	2569,58	6696,96	0,982	0,994	-0,037	-0,043	92,804	92,735	
1	1	4712,41	6925,64	1588,67	5921,62	0,984	0,994	-0,027	-0,011	92,670	92,666	
1	1	4937,63	7122,27	1478,85	5834,81	0,986	0,994	-0,026	-0,017	92,660	92,657	
1	1	5380,83	7509,21	1262,74	5663,98	0,992	0,993	-0,023	-0,021	92,643	92,639	
1	1	5598,18	7698,96	1156,75	5580,21	0,997	0,994	-0,022	-0,021	92,635	92,631	
1	2	2700,79	5169,38	2569,58	6696,96	0,951	0,987	-0,026	-0,036	92,217	92,325	
1	2	4712,41	6925,64	1588,67	5921,62	0,945	0,984	-0,016	-0,003	92,644	92,322	
1	3	899,06	3596,38	3448,14	7391,40	0,829	0,900	-0,025	-0,032	92,988	92,151	
1	3	3148,25	5560,04	2351,39	6524,49	0,774	0,914	-0,013	-0,020	79,936	92,143	
1	3	3814,75	6141,93	2026,39	6267,60	0,742	0,250	-0,009	-0,005	91,295	92,255	
1	3	5380,83	7509,21	1262,74	5663,98	0,668	0,107	0,000	-0,008	91,807	92,245	
1	3	5816,51	7889,58	1050,29	5496,06	0,723	0,872	0,003	-0,002	92,041	92,251	
1	4	1124,13	3792,88	3338,40	7304,65	0,593	0,661	-0,013	-0,031	93,463	93,392	
1	4	1349,32	3989,48	3228,59	7217,86	0,612	0,673	-0,012	-0,032	93,305	93,037	
1	4	2475,40	4972,61	2679,49	6783,83	0,670	0,741	-0,005	-0,028	92,689	91,605	
1	4	3370,80	5754,34	2242,87	6438,72	0,636	0,707	0,000	-0,022	92,362	91,737	
1	4	4265,41	6535,38	1806,64	6093,90	0,668	0,684	0,006	-0,005	92,141	91,873	
1	4	4490,24	6731,67	1697,01	6007,25	0,725	0,846	0,007	-0,009	92,100	91,816	
1	5	224,51	3007,46	3777,07	7651,40	0,951	0,995	-0,043	-0,037	95,351	92,610	
1	5	3370,80	5754,34	2242,87	6438,72	0,976	0,995	-0,020	-0,023	92,726	92,605	
1	5	4265,41	6535,38	1806,64	6093,90	1,138	0,994	-0,099	-0,009	92,385	92,600	
1	5	4712,41	6925,64	1588,67	5921,62	0,924	0,993	-2,359	-0,005	92,256	92,603	
1	5	5380,83	7509,21	1262,74	5663,98	1,493	0,993	-0,005	-0,016	92,103	92,605	
1	6	1124,13	3792,88	3338,40	7304,65	0,407	0,467	-0,019	-0,010	89,369	92,224	

1	6	1574 65	4186 20	3118 72	7131.01	0 4 6 4	0 224	-0.001	-0.004	88 879	91 985
2	1	1411 01	4215 58	3747.40	6472 94	0.982	0,224	-0.039	-0.032	93 843	94 280
2	1	1637 52	4440.99	3725.06	6269.88	0.981	0,992	-0.037	-0.023	93,967	94 802
2	1	2568.41	5367.34	3633.26	5435 33	0.988	0.993	-0.030	-0.002	94 505	96.065
2	2	237.03	3047 32	3863 17	7525.43	0.963	0.951	-0.036	-0.027	92.088	92 271
2	2	2568 41	5367 34	3633.26	5435 33	0.959	0.947	-0.021	-0.004	94 990	95 323
2	3	711.35	3519.33	3816.40	7100.20	0.811	0.817	-0.023	-0.026	94.037	92,139
2	3	947.47	3754.31	3793.11	6888.51	0.797	0.906	-0.022	-0.023	93.657	92,146
2	3	2319.45	5119.59	3657.81	5658.52	0.714	0.912	-0.013	-0.012	94,462	95.181
2	4	237.03	3047.32	3863.17	7525.43	0.462	0.428	-0.015	-0.024	94.655	95.366
2	4	1411.01	4215.58	3747.40	6472.94	0.290	0.235	-0.010	-0.015	95.846	97.549
2	4	1637.52	4440.99	3725.06	6269.88	0.276	0.189	-0.008	-0.011	96.112	98.121
2	4	1868.64	4670.98	3702.27	6062.68	0.276	0.181	-0.007	-0.003	96.396	98.337
2	5	237.03	3047.32	3863.17	7525.43	0.990	0.995	-0.036	-0.036	92.334	92.613
2	5	1182.19	3987.88	3769.96	6678.08	1.018	0.995	-0.033	-0.033	92,940	92.609
2	5	1411.01	4215.58	3747.40	6472.94	1.041	0.995	-0.032	-0.029	93.129	92.610
2	5	2090 87	4892.13	3680 35	5863.45	0.958	0.993	-0.041	-0.014	93 787	93 529
2	5	2534.28	5333.38	3636.63	5465.93	0.372	0.993	-0.035	0.006	94.290	95.202
2	6	711.35	3519.33	3816.40	7100.20	0.506	0.196	-0.022	-0.001	92.171	92.075
3	2	235.52	3033.02	3966.39	7436.52	0.962	0.968	-0.030	-0.023	92.336	92.260
3	2	1569.69	4288.20	4418.66	5729.07	0.939	1.000	-0.020	-0.008	96.943	97.030
3	3	701.75	3471.65	4124.43	6839.85	0.797	0.799	-0.015	-0.020	29.625	93.090
3	3	1569.69	4288.20	4418.66	5729.07	0.704	0.892	-0.011	-0.008	97.787	97.736
3	4	235.52	3033.02	3966.39	7436.52	0.394	0.463	-0.006	-0.023	95.097	96.015
3	4	701.75	3471.65	4124.43	6839.85	0.242	0.222	-0.004	-0.020	96,754	98,166
3	4	1777,29	4483,51	4489,03	5463,39	-0,129	0,020	0,006	0,065	102,076	101,458
3	5	701.75	3471.65	4124,43	6839,85	1,051	0,995	-0,024	-0,027	92,455	92,618
4	1	478.78	3181.72	4190.07	7064.14	0.983	0.994	-0.026	-0.033	93.947	93.948
4	2	1374,24	3874,24	4757,77	5803,92	0,940	1,000	-0,012	-0,010	98,073	98,135
4	3	239,82	2996,92	4038,58	7400,43	0,839	0,826	-0,005	-0,025	94,223	92,170
4	3	478,78	3181,72	4190,07	7064,14	0,817	0,812	0,003	-0,023	94,798	92,683
4	3	1142,27	3694,84	4610,71	6130,38	0,739	0,670	0,000	-0,009	97,600	97,291
4	3	1666,93	4100,59	4943,32	5392,01	0,641	0,858	0,001	0,036	101,366	101,685
4	4	239,82	2996,92	4038,58	7400,43	0,351	0,407	0,011	-0,022	95,355	96,414
4	4	1374,24	3874,24	4757,77	5803,92	0,043	0,012	0,015	0,069	102,466	101,813
4	5	478,78	3181,72	4190,07	7064,14	1,067	0,995	0,006	-0,030	92,161	92,618
4	5	1666,93	4100,59	4943,32	5392,01	1,342	0,993	-0,030	0,019	100,335	100,760
4	6	0,00	2811,45	3886,55	7737,93	0,686	0,754	-0,042	-0,022	91,075	92,430
4	6	478,78	3181,72	4190,07	7064,14	0,630	0,160	0,028	0,000	94,216	92,934
5	1	1106,23	3492,77	4758,07	6185,09	0,982	0,991	0,002	-0,019	96,479	97,369
5	2	0,00	2811,45	3886,55	7737,93	0,967	0,951	-0,052	-0,027	91,952	92,272
5	2	208,95	2940,14	4051,17	7444,62	0,964	0,965	-0,018	-0,022	92,461	92,250
5	2	416,79	3068,15	4214,91	7152,87	0,960	0,966	0,002	-0,019	93,127	92,231
5	2	621,32	3194,12	4376,05	6865,76	0,956	0,964	0,013	-0,015	93,968	92,975
5	2	1106,23	3492,77	4758,07	6185,09	0,945	1,000	0,020	-0,004	96,821	96,636
5	3	0,00	2811,45	3886,55	7737,93	0,862	0,844	-0,044	-0,029	93,531	92,140

5	3	208,95	2940,14	4051,17	7444,62	0,846	0,828	-0,003	-0,026	94,173	92,169
5	3	416,79	3068,15	4214,91	7152,87	0,828	0,818	0,021	-0,023	94,967	92,572
5	3	621,32	3194,12	4376,05	6865,76	0,808	0,793	0,034	-0,019	94,917	93,884
5	3	867,34	3345,63	4569,86	6520,43	0,779	0,894	0,040	-0,015	96,345	95,705
5	3	1106,23	3492,77	4758,07	6185,09	0,745	0,689	0,041	-0,012	98,021	97,593
5	4	0,00	2811,45	3886,55	7737,93	0,502	0,459	-0,035	-0,024	94,408	94,912
5	4	416,79	3068,15	4214,91	7152,87	0,252	0,241	0,041	-0,019	96,366	97,756
5	4	867,34	3345,63	4569,86	6520,43	0,174	0,063	0,064	0,010	99,373	100,610
5	6	208,95	2940,14	4051,17	7444,62	0,636	0,550	0,015	-0,014	92,463	92,277
6	2	959,21	3296,59	4714,02	6425,32	0,950	1,000	-0,017	-0,006	95,947	95,692
6	3	492,30	3060,44	4311,24	7064,24	0,827	0,814	-0,020	-0,021	83,767	93,132
6	4	959,21	3296,59	4714,02	6425,32	0,147	0,036	0,009	0,027	100,218	101,111
6	5	1401,71	3520,39	5095,76	5819,78	1,212	0,993	-0,008	-0,017	99,688	98,690
6	6	731,27	3181,30	4517,39	6737,23	0,762	0,991	-0,024	-0,008	96,620	94,431
7	1	1148,91	3229,66	4956,63	6249,63	0,982	0,988	-0,015	-0,017	96,799	97,687
7	2	235,88	2897,31	4106,24	7432,37	0,965	0,965	-0,023	-0,022	92,565	92,244
7	3	929,29	3149,72	4752,09	6534,12	0,788	0,769	-0,001	-0,014	96,846	96,356
7	4	0,00	2811,45	3886,55	7737,93	0,500	0,459	-0,009	-0,024	94,378	94,912
7	4	1148,91	3229,66	4956,63	6249,63	0,056	0,018	0,013	0,042	101,716	102,091
7	5	701,94	3066,96	4540,33	6828,64	1,041	0,995	-0,020	-0,023	94,158	93,150
7	5	1148,91	3229,66	4956,63	6249,63	0,938	0,995	-0,013	-0,014	97,770	96,607
7	6	235,88	2897,31	4106,24	7432,37	0,690	0,563	-0,020	-0,013	92,638	92,263
7	6	701,94	3066,96	4540,33	6828,64	0,818	0,899	-0,011	0,008	96,345	94,530
8	1	0,00	2811,45	3886,55	7737,93	0,985	0,992	-0,040	-0,040	93,041	92,816
8	1	689,88	2943,72	4563,63	6928,58	0,984	0,992	0,017	-0,027	94,646	95,022
8	1	1801,42	3156,84	5654,55	5624,54	0,998	0,981	0,003	-0,007	100,779	100,281
8	2	1353,47	3070,95	5214,91	6150,07	0,950	0,989	0,010	-0,005	98,443	98,265
8	2	1565,34	3111,57	5422,85	5901,51	0,962	0,988	0,008	-0,001	100,170	99,970
8	2	1920,32	3179,63	5771,24	5485,05	1,208	0,987	0,007	-0,008	103,200	102,514
8	3	914,21	2986,73	4783,79	6665,40	0,803	0,783	0,016	-0,016	96,481	95,971
8	3	1801,42	3156,84	5654,55	5624,54	0,911	0,694	0,013	0,014	103,180	102,813
8	4	0,00	2811,45	3886,55	7737,93	0,498	0,459	-0,016	-0,024	94,364	94,912
8	4	1683,38	3134,20	5538,70	5763,03	-0,058	0,003	0,262	0,146	105,385	103,492
8	4	1801,42	3156,84	5654,55	5624,54	-1,778	- 1,900	0,705	0,573	175,138	151,098
8	5	230,38	2855,62	4112,66	7467,65	1,059	0,995	-0,023	-0,032	90,972	92,619
8	5	1565,34	3111,57	5422,85	5901,51	0,556	0,993	-0,114	-0,014	100,334	99,307
8	6	1022,81	3007,55	4890,38	6537,99	0,499	0,991	-0,088	0,136	98,548	97,552
8	6	1131,42	3028,38	4996,97	6410,58	-1,758	- 1,900	0,970	0,950	99,318	96,806
9	1	1816,09	2811,45	5702,63	5921,84	0,989	0,981	-0,019	-0,010	99,706	99,288
9	1	2261,79	2811,45	6148,34	5476,14	1,140	0,977	-0,012	0,012	102,832	102,063
9	1	2362,38	2811,45	6248,93	5375,55	1,285	0,981	-0,011	0,001	103,556	102,239
9	2	232,02	2811,45	4118,57	7505,91	0,968	0,967	-0,024	-0,022	92,493	92,239
9	2	464,22	2811,45	4350,77	7273,71	0,965	0,966	-0,021	-0,018	93,154	92,228
9	3	0,00	2811,45	3886,55	7737,93	0,877	0,844	-0,029	-0,029	93,491	92,140
9	3	695,37	2811,45	4581,92	7042,56	0,839	0,800	-0,013	-0,020	94,826	94,155

9	3	1150,83	2811,45	5037,38	6587,10	0,787	0,775	-0,010	-0,014	97,392	97,174
9	3	2059,68	2811,45	5946,22	5678,25	0,548	0,698	0,003	0,006	103,763	103,364
9	4	1371,49	2811,45	5258,04	6366,44	-0,139	0,013	0,015	0,060	102,128	102,694
9	5	464,22	2811,45	4350,77	7273,71	1,070	0,995	-0,031	-0,028	92,714	92,625
9	5	1150,83	2811,45	5037,38	6587,10	0,834	0,995	-0,024	-0,018	96,669	95,548
9	5	2362,38	2811,45	6248,93	5375,55	0,857	0,993	-0,536	-0,001	110,602	104,721
10	1	695,37	2811,45	4581,92	7042,56	0,984	0,993	-0,036	-0,028	94,475	94,824
10	1	1150,83	2811,45	5037,38	6587,10	0,983	0,991	-0,029	-0,020	96,048	96,829
10	1	2059,68	2811,45	5946,22	5678,25	1,022	0,981	-0,015	-0,012	101,352	100,537
10	1	2261,79	2811,45	6148,34	5476,14	1,136	0,977	-0,011	0,012	102,802	102,063
10	1	2362,38	2811,45	6248,93	5375,55	1,278	0,981	-0,010	0,001	103,526	102,239
10	2	0,00	2811,45	3886,55	7737,93	0,970	0,951	-0,039	-0,027	92,000	92,272
10	2	1599,87	2811,45	5486,42	6138,06	0,960	0,988	-0,013	0,000	99,331	99,389
10	3	923,02	2811,45	4809,57	6814,91	0,823	0,788	-0,014	-0,016	95,989	95,697
10	3	1150,83	2811,45	5037,38	6587,10	0,793	0,775	-0,011	-0,014	97,366	97,174
10	4	1599,87	2811,45	5486,42	6138,06	-0,163	0,006	0,079	0,070	103,719	103,712
10	4	1937,56	2811,45	5824,11	5800,37	-1,778	- 1,900	0,633	0,646	177,975	165,538
10	5	1371,49	2811,45	5258,04	6366,44	0,904	0,995	-0,023	-0,018	98,153	97,077
10	5	2261,79	2811,45	6148,34	5476,14	1,022	0,993	-0,299	0,011	102,882	104,472
10	6	1150,83	2811,45	5037,38	6587,10	0,746	0,730	-0,013	-0,015	98,705	96,740
10	6	1288,74	2811,45	5175,29	6449,19	-1,001	0,631	0,669	0,176	99,586	97,269
11	1	923,02	2811,45	4809,57	6814,91	0,984	0,992	-0,032	-0,023	95,171	95,842
11	1	1371,49	2811,45	5258,04	6366,44	0,983	0,987	-0,025	-0,020	97,057	97,931
11	1	1599,87	2811,45	5486,42	6138,06	0,984	0,985	-0,021	-0,015	98,306	98,789
11	2	232,02	2811,45	4118,57	7505,91	0,969	0,967	-0,034	-0,022	92,526	92,239
11	2	1371,49	2811,45	5258,04	6366,44	0,956	0,989	-0,016	-0,005	97,726	97,729
11	2	2059,68	2811,45	5946,22	5678,25	1,216	0,987	-0,004	0,001	102,894	102,945
11	4	923,02	2811,45	4809,57	6814,91	0,160	0,052	-0,004	0,002	98,925	101,075
11	4	1150,83	2811,45	5037,38	6587,10	0,048	0,025	0,001	0,023	100,487	102,011
11	5	0,00	2811,45	3886,55	7737,93	0,971	0,995	-0,039	-0,036	92,869	92,611
11	6	923,02	2811,45	4809,57	6814,91	1,004	0,873	-0,015	0,011	97,115	95,527
11	6	1261,16	2811,45	5147,71	6476,77	-0,429	0,660	-0,373	0,015	99,387	96,873
11	6	1288,74	2811,45	5175,29	6449,19	-0,815	0,631	0,174	0,176	99,559	97,269
12	1	0,00	2811,45	3886,55	7737,93	0,985	0,992	-0,047	-0,040	93,122	92,816
12	2	0,00	2811,45	3886,55	7737,93	0,971	0,951	-0,037	-0,027	92,030	92,272
12	3	691,72	2810,45	3194,82	8430,66	0,919	0,907	-0,030	-0,026	92,107	92,072
12	4	230,80	2811,12	3655,75	7969,07	0,632	0,620	-0,019	-0,025	93,375	93,548
12	4	691,72	2810,45	3194,82	8430,66	0,745	0,809	-0,021	0,013	92,340	91,092
13	1	0,00	2811,45	3886,55	7737,93	0,985	0,992	-0,046	-0,040	93,137	92,816
13	1	1150,88	2811,45	2735,66	8888,81	0,986	0,992	-0,050	-0,043	92,448	92,765
13	1	2293,39	2811,45	1593,16	10031,32	0,987	0,991	-0,054	-0,056	92,411	92,633
13	1	3197,75	2811,45	688,80	10935,68	0,987	0,987	-0,057	-0,059	92,428	92,452
13	1	3647,62	2811,45	238,93	11385,55	0,987	0,980	-0,059	-0,056	92,437	92,316
13	2	461,51	2811,45	3425,04	8199,44	0,976	0,957	-0,038	-0,033	91,339	92,300
13	2	1609,13	2811,45	2277,42	9347,06	0,982	0,989	-0,042	-0,039	91,065	92,325

13	2	1837,68	2811,45	2048,87	9575,61	0,982	0,988	-0,043	-0,040	158,227	92,336
13	2	3422,83	2811,45	463,72	11160,76	0,986	0,978	-0,048	-0,048	92,140	92,467
13	3	230,86	2811,45	3655,69	7968,79	0,903	0,905	-0,028	-0,030	92,803	92,149
13	3	1150,88	2811,45	2735,66	8888,81	0,937	0,913	-0,031	-0,031	91,826	92,037
13	4	0,00	2811,45	3886,55	7737,93	0,483	0,459	-0,017	-0,024	94,293	94,912
13	4	1380,16	2811,45	2506,39	9118,09	0,814	0,893	-0,022	0,007	91,809	91,109
13	5	691,87	2811,45	3194,68	8429,80	0,867	0,995	-0,047	-0,043	92,693	92,612
13	5	1150,88	2811,45	2735,66	8888,81	0,796	0,995	-0,049	-0,040	92,057	92,615
13	5	1609,13	2811,45	2277,42	9347,06	0,797	0,996	-0,051	-0,044	91,801	92,617
13	5	2972,31	2811,45	914,24	10710,24	1,031	0,996	-0,057	-0,060	91,646	92,646
13	5	3871,89	2811,45	14,66	11609,82	1,009	0,996	-0,060	-0,060	91,638	92,646
13	6	230,86	2811,45	3655,69	7968,79	0,841	0,999	-0,032	-0,024	89,186	92,439
13	6	691,87	2811,45	3194,68	8429,80	0,941	0,911	-0,033	-0,033	93,218	92,474
13	6	1609,13	2811,45	2277,42	9347,06	0,979	0,973	-0,037	-0,040	91,888	92,493
13	6	3871,89	2811,45	14,66	11609,82	1,198	0,991	-0,044	-0,052	91,639	92,730
14	1	848,01	3157,78	3112,48	8165,67	0,986	0,993	-0,046	-0,047	92,646	92,786
14	1	1271,52	3330,74	2725,90	8379,29	0,986	0,992	-0,047	-0,043	92,569	92,759
14	1	1483,11	3417,15	2532,77	8486,01	0,986	0,992	-0,047	-0,044	92,549	92,744
14	1	1905,47	3589,65	2147,23	8699,05	0,986	0,992	-0,048	-0,047	92,530	92,710
14	1	3799,43	4363,14	418,42	9654,37	0,987	0,987	-0,051	-0,059	92,538	92,421
14	2	1059,80	3244,27	2919,16	8272,49	0,977	0,960	-0,037	-0,030	91,316	92,329
14	2	1271,52	3330,74	2725,90	8379,29	0,977	0,962	-0,037	-0,033	91,302	92,287
14	2	2959,29	4020,03	1185,30	9230,60	0,982	0,987	-0,040	-0,046	134,989	92,411
14	2	3799,43	4363,14	418,42	9654,37	0,983	0,981	-0,041	-0,049	92,980	92,452
14	2	4008,98	4448,72	227,14	9760,06	0,984	0,986	-0,041	-0,050	93,036	92,459
14	3	848,01	3157,78	3112,48	8165,67	0,916	0,907	-0,027	-0,033	92,156	92,097
14	3	1905,47	3589,65	2147,23	8699,05	0,937	0,911	-0,029	-0,033	91,761	92,048
14	3	2327,48	3761,99	1762,02	8911,91	0,944	0,914	-0,029	-0,036	91,722	92,024
14	3	2538,24	3848,07	1569,63	9018,22	0,947	0,915	-0,030	-0,041	91,712	92,020
14	3	3589,68	4277,48	609,88	9548,57	0,960	0,923	-0,031	-0,045	91,717	92,026
14	3	3799,43	4363,14	418,42	9654,37	0,962	0,924	-0,032	-0,046	91,725	92,023
14	4	424,20	2984,69	3499,34	7951,90	0,674	0,682	-0,017	-0,027	93,081	92,824
14	4	848,01	3157,78	3112,48	8165,67	0,754	0,810	-0,018	-0,031	92,403	91,410
14	4	1483,11	3417,15	2532,77	8486,01	0,799	0,850	-0,019	0,007	91,925	91,129
14	4	2327,48	3761,99	1762,02	8911,91	0,840	0,890	-0,020	0,001	91,714	91,120
14	4	2959,29	4020,03	1185,30	9230,60	0,866	0,900	-0,021	-0,003	91,666	91,046
14	4	3169,59	4105,92	993,34	9336,67	0,874	0,903	-0,021	-0,003	91,658	90,993
14	4	3589,68	4277,48	609,88	9548,57	0,889	0,907	-0,022	-0,004	91,649	90,976
14	4	4257,82	4550,35	0,00	9885,58	0,909	0,913	-0,023	-0,013	91,643	85,823
14	5	0,00	2811,45	3886,55	7737,93	0,984	0,995	-0,034	-0,036	93,078	92,611
14	5	2959,29	4020,03	1185,30	9230,60	1,155	0,996	-0,047	-0,057	91,680	92,633
14	5	4218,33	4534,22	36,05	9865,66	1,108	0,996	-0,048	-0,061	91,643	92,635
14	6	212,11	2898,08	3692,93	7844,92	0,798	0,991	-0,030	-0,022	89,624	92,421
14	6	1694,42	3503,45	2339,88	8592,60	0,917	0,948	-0,032	-0,030	92,120	92,341
14	6	4257,82	4550,35	0,00	9885,58	1,026	0,956	-0,036	-0,014	91,645	86,934
15	1	1770,47	3992,24	2567,35	7876,33	0,986	0,994	-0,042	-0,043	92,645	92,741

15	1	2876,23	4729,72	1743,44	7962,77	0,986	0,992	-0,041	-0,050	92,584	92,668
15	1	3538,82	5171,63	1249,73	8014,57	0,986	0,992	-0,041	-0,053	92,570	92,600
15	1	3759,51	5318,82	1085,29	8031,82	0,986	0,992	-0,040	-0,053	92,568	92,576
15	1	4861,29	6053,64	264,34	8117,95	0,986	0,988	-0,040	-0,051	92,561	92,420
15	1	5081,26	6200,34	100,44	8135,14	0,986	0,985	-0,039	-0,051	92,561	92,383
15	1	5148,66	6245,30	50,22	8140,41	0,986	0,986	-0,039	-0,051	92,561	92,370
15	2	2212,94	4287,35	2237,66	7910,92	0,976	0,988	-0,032	-0,037	91,931	92,332
15	2	2655,20	4582,31	1908,13	7945,49	0,976	0,988	-0,032	-0,040	92,070	92,358
15	2	3097,18	4877,08	1578,81	7980,04	0,977	0,988	-0,032	-0,045	92,195	92,379
15	2	3318,04	5024,38	1414,24	7997,31	0,977	0,988	-0,031	-0,046	92,249	92,389
15	2	3759,51	5318,82	1085,29	8031,82	0,977	0,988	-0,031	-0,047	92,339	92,404
15	2	4641,18	5906,84	428,35	8100,74	0,978	0,981	-0,030	-0,044	92,454	92,421
15	2	5182,36	6267,77	25,11	8143,04	0,979	0,996	-0,030	-0,043	92,494	92,426
15	3	1327,83	3697,03	2897,17	7841,73	0,911	0,904	-0,024	-0,027	92,136	92,037
15	3	1770,47	3992,24	2567,35	7876,33	0,915	0,903	-0,023	-0,029	91,979	92,043
15	3	2876,23	4729,72	1743,44	7962,77	0,924	0,921	-0,022	-0,035	91,862	92,024
15	3	3097,18	4877,08	1578,81	7980,04	0,925	0,909	-0,022	-0,039	91,871	92,018
15	3	3538,82	5171,63	1249,73	8014,57	0,929	0,908	-0,022	-0,039	91,917	92,025
15	3	3759,51	5318,82	1085,29	8031,82	0,930	0,928	-0,021	-0,039	91,955	92,025
15	3	4861,29	6053,64	264,34	8117,95	0.935	0,934	-0,021	-0,037	92,283	92,027
15	4	221,32	2959,06	3721,64	7755,23	0,551	0,534	-0,015	-0,024	93,771	94,359
15	4	664,00	3254,30	3391,80	7789,84	0,678	0,664	-0,015	-0,029	93,024	92,725
15	4	1549,16	3844,65	2732,25	7859,03	0,791	0,821	-0,014	0.009	92,201	91,148
15	4	2212,94	4287,35	2237,66	7910,92	0,823	0,825	-0,013	0,005	91,920	91,155
15	4	4420,95	5759,96	592,45	8083,52	0,840	0,891	-0,012	-0,003	91,677	91,077
15	4	5081,26	6200,34	100,44	8135,14	0,815	0,919	-0,011	-0,004	91,675	91,116
15	4	5148,66	6245,30	50,22	8140,41	0,811	0,918	-0,011	-0,004	91,675	91,114
15	5	442,68	3106,69	3556,70	7772,53	1,019	0,995	-0,037	-0,037	94,173	92,610
15	5	3980,10	5465,94	920,93	8049,06	0,936	0,995	-0,035	-0,047	91,704	92,623
15	5	5148,66	6245,30	50,22	8140,41	1,037	0,995	-0,034	-0,045	91,656	92,619
15	6	221,32	2959,06	3721,64	7755,23	0,776	0,768	-0,028	-0,020	89,937	92,400
15	6	664,00	3254,30	3391,80	7789,84	0,757	0,805	-0,028	-0,018	88,521	92,343
15	6	885,25	3401,86	3226,94	7807,13	0,752	0,833	-0,028	-0,020	91,089	92,354
15	6	1991,73	4139,81	2402,49	7893,63	0,769	0,875	-0,027	-0,019	92,459	92,199
15	6	4200,58	5612,99	756,65	8066,30	0,985	0,937	-0,025	-0,019	91,718	92,182
16	1	985,01	3601,45	3298,21	7536,27	0,985	0,993	-0,040	-0,044	92,908	92,789
16	1	3701,28	5779,96	1675,80	6980,17	0,985	0,994	-0,032	-0,030	92,620	92,659
16	1	5184,04	6969,17	790,15	6676,61	0,985	0,992	-0,026	-0,028	92,581	92,545
16	1	5924,51	7563,04	347,87	6525,01	0,985	0,991	-0,021	-0,019	92,572	92,480
16	1	6506,93	8030,15	0,00	6405,78	0,986	0,939	-0,012	-0,025	92,568	93,780
16	2	0.00	2811.45	3886.55	7737.93	0,973	0,951	-0.033	-0.027	92,111	92,272
16	2	1478.18	3996.99	3003.64	7435.30	0,972	0,959	-0,029	-0,028	92,118	92,258
16	2	1971.76	4392.84	2708.83	7334.26	0,972	0,962	-0.028	-0.031	92.258	92,285
16	2	2218.67	4590.87	2561.35	7283.71	0.972	0,988	-0,027	-0,032	92,323	92,357
16	2	6506.93	8030.15	0.00	6405.78	0,970	0,973	-0.005	-0.016	92,568	93.553
16	3	0,00	2811,45	3886,55	7737,93	0,901	0,844	-0,024	-0,029	93,426	92,140

16	3	2712,74	4987,13	2266,25	7182,56	0,900	0,900	-0,016	-0,026	92,144	92,054
16	3	3701,28	5779,96	1675,80	6980,17	0,898	0,441	-0,013	-0,017	92,328	92,050
16	3	5430,97	7167,21	642,66	6626,06	0,875	0,905	-0,007	-0,013	93,155	92,183
16	3	5677,81	7365,18	495,22	6575,52	0,867	0,905	-0,006	-0,011	93,254	92,186
16	4	0,00	2811,45	3886,55	7737,93	0,473	0,459	-0,014	-0,024	94,251	94,912
16	4	492,27	3206,26	3592,52	7637,15	0,570	0,605	-0,013	-0,027	93,568	93,853
16	4	1231,54	3799,17	3150,96	7485,80	0,705	0,738	-0,011	-0,031	92,842	92,364
16	4	2465,67	4788,97	2413,82	7233,14	0,840	0,780	-0,007	0,007	92,172	91,205
16	4	4442,89	6374,74	1232,84	6828,35	0,798	0,900	-0,002	-0,001	91,812	91,280
16	4	4690,10	6573,02	1085,18	6777,73	0,763	0,883	-0,001	-0,001	91,803	91,313
16	4	5677,81	7365,18	495,22	6575,52	0,541	0,286	0,002	-0,002	91,842	91,459
16	5	1231,54	3799,17	3150,96	7485,80	1,111	0,995	-0,034	-0,041	93,432	92,605
16	5	1478,18	3996,99	3003,64	7435,30	1,109	0,995	-0,033	-0,035	93,172	92,607
16	5	4195,63	6176,44	1380,52	6878,97	0,812	0,995	-0,025	-0,019	91,888	92,608
16	5	6417,73	7958,61	53,28	6424,04	0,919	0,994	0,059	-0,008	91,748	92,610
16	6	1478,18	3996,99	3003,64	7435,30	0,636	0,596	-0,024	-0,010	93,905	92,147
16	6	2959,86	5185,32	2118,64	7131,96	0,827	0,960	-0,020	0,010	92,514	91,745
16	6	5801,16	7464,11	421,55	6550,27	0,662	- 1,900	0,766	0,143	117,909	129,236
16	6	5924,51	7563,04	347,87	6525,01	0,640	- 1,900	1,229	0,684	117,899	117,510