

UNIVERSIDADE FEDERAL FLUMINENSE

ESCOLA DE ENGENHARIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE TELECOMUNICAÇÕES

TALITA DE ALMEIDA SILVA CASTRO

COMPORTAMENTO DO CANAL EM SONDAGEM URBANA NA FAIXA 3,5 GHz

NITERÓI-RJ 2020 UNIVERSIDADE FEDERAL FLUMINENSE

ESCOLA DE ENGENHARIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE TELECOMUNICAÇÕES

TALITA DE ALMEIDA SILVA CASTRO

COMPORTAMENTO DO CANAL EM SONDAGEM URBANA NA FAIXA 3,5 GHz

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Engenharia Elétrica e de Telecomunicações da Universidade Federal Fluminense, como requisito parcial para obtenção do título de Mestre em Engenharia Elétrica e de Telecomunicações. Área de concentração: Sistemas de Telecomunicações.

Orientador: Prof. Dr. Tadeu Nagashima Ferreira Coorientador: Prof. Dr. Vinicius Nunes Henrique Silva

> NITERÓI 2020

Ficha catalográfica automática - SDC/BEE Gerada com informações fornecidas pelo autor

Bibliotecário responsável: Sandra Lopes Coelho - CRB7/3389

TALITA DE ALMEIDA SILVA CASTRO

COMPORTAMENTO DO CANAL EM SONDAGEM URBANA NA FAIXA DE 3,5 GHZ

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Engenharia Elétrica e de Telecomunicações da Universidade Federal Fluminense como requisito parcial para a Obtenção do Grau de Mestre em Engenharia Elétrica e de Telecomunicações.

Área de concentração: Sistemas de Telecomunicações.

BANCA EXAMINADORA

Aewein

Prof. Dr. Tadeu Nagashima Ferreira - Orientador Universidade Federal Fluminense - UFF

Prof. Dr. Vinícius Nunes Henrique Silva - Coorientador Universidade Federal Fluminense - UFF

Prof. Dr. Maurício Weber Benjó da Silva Universidade Federal Fluminense - UFF

Michel Pompen Tcheper

Prof. Dr. Michel Pompeu Tcheou Universidade do Estado do Rio de Janeiro - UERJ

> Niterói (setembro/2020)

Esta dissertação é dedicada,

primeiramente a Deus por ter me permitido chegar

até aqui e à minha família pelo apoio incondicional e incentivo.

AGRADECIMENTO

Primeiramente, a Deus por ter me permitido chegar aqui.

Aos orientadores Prof. Dr. Tadeu Ferreira e Prof. Dr. Vinicius Nunes pela orientação e atenção nas etapas deste projeto.

Ao Fábio J. B. da Fonseca por ter compartilhado as medidas realizadas no trabalho referente a "Análise do Comportamento Faixa Estreita do Canal Rádio Móvel em 3,5GHz".

Aos meus pais Adailton Gomes e Ismalia Maria por sempre buscarem o melhor para mim e me estimularem a correr atrás dos meus sonhos. Se cheguei até aqui foi graças a vocês.

Ao meu esposo Renato José pela compreensão e apoio incondicional durante esses anos de estudo. Estou imensamente feliz por completar mais esta etapa o seu lado.

Aos meus amigos, pela amizade e pelo apoio durante esses anos de estudo.

RESUMO

Esta dissertação tem o intuito de estudar o comportamento do canal rádio móvel para a faixa de frequência que antes era designado para o uso do padrão WiMax e que agora a Anatel pretende destinar para a próxima geração de redes móveis, o 5G.

Foi apresentado um embasamento teórico a respeito do canal rádio móvel, das funções de densidades de probabilidades e a sondagem do canal em faixa estreita.

Com o objetivo de estudar o comportamento do canal na faixa de 3,5GHz, foram utilizados dados de uma campanha de medição nas ruas no entorno da reitoria da UFF, os dados medidos foram analisados no *software* Matlab com o propósito de estudar a estatística de melhor ajuste para a variabilidade do sinal em desvanecimento lento e rápido e determinar os parâmetros de sondagem como taxa de cruzamento de nível e duração média do desvanecimento, buscando assim uma correspondência entre os valores teórico e experimental.

Palavras-chave: Canal rádio móvel; desvanecimento lento, desvanecimento rápido, faixa estreita, sondagem do canal, teste qui-quadrado.

ABSTRACT

This dissertation aims at studying the behavior of the mobile radio channel for the frequency range which was previously designated for the use of the WiMax standard and that Anatel now intends to use it for the next generation of mobile networks, the 5G.

At first, a theoretical basement was presented regarding the mobile radio channel, the probability density functions and the narrow-band channel sounding.

In order to study the behavior of the channel in the 3.5 GHz band, measurement campaign data was used by this dissertation.

The measured data was analyzed in the Matlab software with the purpose of studying the best fit statistics for the variability of the signal in slow and fast fading and determining the sounding parameters such as level crossing rate and average fading duration, searching for a correspondence between theoretical and experimental values.

Keywords: Mobile radio channel; slow fade, fast fade, narrow band, channel souding, chi-square test.

LISTA DE FIGURAS:

Figura 1- Desvanecimento em pequena x larga escala [Fonte: Rappaport, 2ª ed.,2008]19
Figura 2-Distribuição Da Amplitude Para O Canal De Ricean [Fonte: Simon Haykin E Michael
Moher - 2008]24
Figura 3-Densidade de Weibull - Fonte: Shankar, P. Mohana - Fading and Shadowing in
Wireless System – Editora Springer, 2012 – pág.43]27
Figura 4-Parâmetros Definidos no LCR e AFD – Fonte: Parsons, John David. 2000. The Mobile
Radio Propagation Channel – 2ª Edição29
Figura 5-Configuração gráfica do teste qui-quadrado - [Fonte: Martins, G.A; Domingues, O
estatística geral e aplicada]32
Figura 6-Análise Da Distribuição Qui-Quadrado - [Fonte: Martins, G.A; Domingues, O
Estatística Geral E Aplicada]32
Figura 7 - Representação para encontrar o valor crítico na tabela do Qui-Quadrado - [Fonte:
Martins, G.A; Domingues, O Estatística Geral E Aplicada]33
Figura 8 – Cenário de estudo dividido em rotas - Fonte: Google Earth
Figura 9 Retas de Ajuste para a Rota 1 - Praia de Icaraí
Figura 10 - Retas de Ajuste para a Rota 2 – Rua Mariz e Barros41
Figura 11 - Retas de Ajuste para a Rota 3 – Rua Roberto Silveira43
Figura 12 - Retas de Ajuste para a Rota 4 – Rua Presidente Backer45
Figura 13 - Reta de Ajuste para Praia de Icaraí (Rota 1) polinômio de grau 347
Figura 14 - Reta de Ajuste para Rua Mariz e Barros (Rota 2) a partir do polinômio de grau 3 48
Figura 15- Reta de Ajuste para Rua Roberto Silveira (rota 3) a partir do polinômio de grau 349
Figura 16-Reta de Ajuste para Rua Presidente Backer (rota 4) a partir do polinômio de grau 3
Figura 17 - Variabilidade rápida - Rota 1 Praia de icaraí51
Figura 18 - Variabilidade Rápida - Rota 2 Mariz e Barros52
Figura 19 - Variabilidade Rápida - Rota 3 Roberto Silveira53
Figura 20 - Variabilidade Rápida - Rota 4 Presidente Backer54
Figura 21- Setores que melhor e pior se ajustaram a Rota 1 - Praia de Icaraí

Figura 22- Setores Que Melhor E Pior Se Ajustaram A Rota 2 - Rua Mariz e Barros60
Figura 23 - Setores Que Melhor E Pior Se Ajustaram A Rota 3 - Rua Roberto Silveira63
Figura 24- Setores Que Melhor E Pior Se Ajustaram A Rota 4 - Rua Presidente Backer66
Figura 25- Taxa de Cruzamento de Nível e a Duração Média de Desvanecimento - Rota 1 Praia
Icaraí69
Figura 26 - Taxa De Cruzamento De Nível e a Duração Média De Desvanecimento - ROTA 2 Rua
Mariz e Barros71
Figura 27 - Taxa De Cruzamento De Nível e a Duração Média De Desvanecimento - Rota 3 Rua
Roberto Silveira73
Figura 28 - Taxa De Cruzamento De Nível e a Duração Média De Desvanecimento - Rota 4 Rua
Presidente Backer

LISTA DE TABELAS:

Tabela 1- Quadro resumo referente ao fator atenuação e equações das retas da perda de
percurso46
Tabela 2- Comparativo das FDP's para a Rota 1 - Praia Icaraí
Tabela 3 - Comparativo das FDP's para a Rota 2 - Rua Mariz e Barros61
Tabela 4 - Comparativo das FDP'S para a Rota 3 - Rua Roberto Silveira64
Tabela 5 - Comparativo das FDP's para a Rota 4 - Rua Presidente Backer67
Tabela 6 - distribuição qui-quadrado - fonte: bussab, wilton o. Morettin, pedro a. – estatística
básica82
tabela 7 - resultado do teste qui-quadrado para cada fdp nos setores da rota 183
tabela 8 - resultado do teste qui-quadrado para cada fdp nos setores da rota 287
tabela 9 - resultado do teste qui-quadrado para cada fdp nos setores da rota 390
tabela 10 - resultado do teste qui-quadrado para cada fdp nos setores da rota 494

SUMÁRIO:

CAPÍTUL	0 114	
INTRODUÇÃO14		
1.1.	MOTIVAÇÃO15	
1.2.	OBJETIVOS15	
1.3.	ESTRUTURA DO TRABALHO16	
CAPÍTUL	0 2	
CANAL R	ÁDIO MÓVEL17	
2.1. M	ECANISMOS DE PROPAGAÇÃO17	
2.2.	1. DESVANECIMENTO EM LARGA ESCALA20	
2	.2.1.1. PROPAGAÇÃO EM ESPAÇO LIVRE20	
2	.2.1.2. PERDA DE CAMINHO LOG-DISTÂNCIA21	
2	.2.1.3. DISTRIBUIÇÃO LOG-NORMAL21	
2.2.	2. DESVANECIMENTO EM PEQUENA ESCALA22	
2	.2.2.1. DISTRIBUIÇÃO RAYLEIGH22	
2	.2.2.3. DISTRIBUIÇÃO RICEAN23	
2	.2.2.4. DISTRIBUIÇÃO NAKAGAMI-M25	
2	.2.2.5. DISTRIBUIÇÃO WEIBULL	
2.3. SC	ONDAGEM DO CANAL EM BANDA ESTREITA27	
2.3.	1. TAXA DE CRUZAMENTO DE NÍVEL28	
2.3.	2. DURAÇÃO MÉDIA DE DESVANECIMENTO29	
CAPÍTUL	0 3	
AVALIAÇ	ÃO DE DISTRIBUIÇÕES: TESTE QUI-QUADRADO31	
3.1. TI	POS DE TESTES QUI-QUADRADO33	
3.1.	1. TESTE DE ADERÊNCIA33	
3.1.	2. TESTE DE INDEPENDÊNCIA34	
CAPÍTUL	0 4	

PROCESSAMENTO DOS DADOS E RESULTADOS
4.1. DESVANECIMENTO EM LARGA ESCALA37
4.2. DESVANECIMENTO EM PEQUENA ESCALA50
4.3. SONDAGEM EM BANDA ESTREITA67
CAPÍTULO 5
CONCLUSÃO
BIBLIOGRAFIA79
ANEXO
I – DISTRIBUIÇÃO QUI-QUADRADO82
II – ROTA 1 PRAIA ICARAÍ
III – ROTA 2 RUA MARIZ E BARROS87
IV – ROTA 3 RUA ROBERTO SILVEIRA90
V – ROTA 4 RUA PRESIDENTE BACKER94

CAPÍTULO 1

INTRODUÇÃO

As tecnologias de acesso com banda larga sem fio (BWA – *broadband wireless acess*) surgiram como redes complementares aos acessos cabeados (DSL – *digital subscriber line*), com o objetivo de promover a mobilidade do usuário independentemente de sua localização geográfica. As redes sem fio foram padronizadas segundo o IEEE (*Institute of Electrical and Electronics Engineers*) e divididas em 4 grupos de acordo com o seu alcance, sendo eles: WPAN (*wireless personal área network* – padrão IEEE 802.15), WLAN (*wireless local area network* – padrão IEEE802.11), WMAN (*wireless metropolitan area network* – padrão IEEE 802.16) e WWAN (*wireless wide area network* – padrão IEEE 802.20) [1]. Essas tecnologias se popularizaram devido ao baixo custo de implementação se compradas com as redes cabeadas e além de possuírem grande capilaridade para o desenvolvimento e rápida implantação.

As redes de comunicação metropolitana (WMANs), cujo padrão original era 802.16, foi especificado para as faixas de frequência de 10-66 GHz, considerando sempre aplicações com linha de visada (LOS - *Line of Sight*). Em janeiro de 2003, a IEEE aprovou o padrão 802.16a, que cobre as faixas de frequências entre 2 GHz e 11 GHz. Estas frequências abaixo de 11 GHz possibilitam a performance sem linha de visada (NLOS - *Non Line of Sight*) [2], fazendo com que o padrão 802.16a seja a tecnologia ideal para as aplicações de última milha, onde há a presença de obstáculos naturais e artificiais entre o transmissor e o receptor. A configuração básica deste padrão é formada por uma estação base (com a antena montada geralmente no topo de um prédio ou em uma torre) que faz uma comunicação ponto multipontos com os equipamentos dos assinantes [3].

Atualmente, com o número de usuários cada vez maior e demandando mais largura de banda, as redes móveis precisam constantemente buscar soluções para aumentar sua capacidade de transmissão. Este aumento da necessidade por largura de banda impulsiona a expansão da capacidade de transporte de dados e consequentemente, o aumento da velocidade do tráfego da informação.

No Brasil, tem se discutido os avanços das redes de telecomunicações com a implementação do 5G (quinta geração). Esta nova geração chega com a promessa de revolucionar a indústria através do uso de inteligência artificial propiciando um ganho considerável em taxa de dados, uma infinidade de dispositivos interconectados e fomentando uma sociedade cada vez mais conectada. No entanto, para que esta nova tecnologia móvel seja implementada é necessário o uso adequado do espectro eletromagnético e uma topologia de rede mais robusta. Na prática, esta nova geração

irá utilizar as faixas de 700 MHz, 2,3 GHz, faixa de 3,5 GHz e faixa de ondas de alta frequência, conhecidas como ondas milimétricas [4]. Especificamente a faixa de 3,5 GHz, faixa que é o objeto de estudo, que no futuro irá substituir as redes Wi-Fi atuais de modo a oferecer uma velocidade mais alta e uma maior cobertura.

A Agência Nacional de Telecomunicações (Anatel) já realizou este ano uma consulta pública sobre o Edital de Licitação das faixas de radiofrequências que irão permitir a implementação da tecnologia de quinta geração no Brasil. O próximo passou será a realização do leilão destas faixas destinadas para o 5G.

1.1. MOTIVAÇÃO

Estudar o comportamento do canal é fundamental para se realizar o correto dimensionamento dos sistemas de comunicações móveis. Para isto, é necessário investigar o comportamento do mesmo em faixa estreita e as suas interferências, considerando os diversos ambientes em função da faixa de frequência escolhida.

Com o propósito de estudar este comportamento em faixa estreita, foram utilizadas como base as medidas realizadas no trabalho do Fábio J. B. da Fonseca, M.Sc., referente à dissertação [2]. O intuito é apresentar evolutivas para o trabalho [2] tanto no cenário com desvanecimento em larga, com a adição de duas novas distribuições para a análise, como em pequena escala onde buscou-se traçar mais retas para descrever melhor a perda de percurso e posteriormente, aumentar o grau do coeficiente da perda para uma adequação dos pontos medidos à curva da trajetória.

Com a importância da faixa de 3,5 GHz para a próxima geração de redes de telecomunicações, buscou-se, a partir dos dados medidos na pesquisa [2], definir as estatísticas e os parâmetros de desvanecimento para melhor compreensão do comportamento do canal rádio móvel.

1.2. OBJETIVOS

Este trabalho tem como objetivo modelar dados de propagação em 3,5 GHz, utilizando dados de uma campanha de medição realizadas em [2]. A pesquisa busca determinar quais as distribuições estatísticas do desvanecimento, tanto lento como o rápido, que descrevem os sinais medidos, a partir da análise da variabilidade do sinal recebido no cenário de estudo com frequência estabelecida na faixa de 3,5 GHz. Além disso, também foram determinados os parâmetros da taxa de cruzamento de nível e duração média de desvanecimento para distribuição de Rayleigh.

1.3. ESTRUTURA DO TRABALHO

No Capítulo 2 apresentam-se as principais características do canal rádio, detalhando as funções de densidade de distribuição estatística, analisando o comportamento faixa estreita do canal. Em seguida, no Capítulo 3, é apresentado a parte teórica do teste qui-quadrado utilizado para verificar a aderência dos pontos medidos com os teóricos. O Capítulo 4, descreve como foi realizado o processamento dos dados e a análise dos resultados encontrados para as rotas do entorno da reitoria da UFF. Por fim, no Capítulo 5, descrevem-se as conclusões deste trabalho.

CAPÍTULO 2

CANAL RÁDIO MÓVEL

O desempenho dos sistemas de comunicação é dependente do meio em que o mesmo está inserido. Em uma transmissão sem fio, o canal pode variar continuamente dentro de um pequeno intervalo de tempo de observação e este comportamento aleatório do canal, dentre outros fatores, faz com que a comunicação através dele seja corrompida. O caminho que o sinal percorre desde o transmissor até o receptor pode variar desde a simples linha de visada até que seja seriamente obstruído devido às construções, morros e folhagens. A estimativa do nível de um sinal recebido em determinado ponto pode ser realizada através de modelos matemáticos. Segundo [5], esses modelos, para comunicação móvel, podem ser classificados da seguinte forma:

- Modelos determinísticos: levam em conta o modelo físico definido pelo meio de propagação que está inserido. Possuem maior complexidade, exigência de tempo e capacidade de processamento computacional, fornecendo estimativas mais confiáveis do comportamento da propagação.
- Modelos estatísticos: assumem uma forma de abordagem empírica, medindo as características de propagação do sinal para vários tipos de ambientes. Apesar de possuir um processamento computacional mais rápido, não apresentam resultados tão exatos quanto os modelos determinísticos.

2.1. MECANISMOS DE PROPAGAÇÃO

Para realizar a caracterização do canal, deve se considerar os mecanismos de propagação no percurso entre o transmissor (Tx) e o receptor (Rx) que podem sofrer variações no nível do sinal desde uma simples linha de visada a um percurso seriamente obstruído por edificações, montanhas e vegetações [6].

No planejamento de sistemas sem fio, é extremamente importante realizar o dimensionamento de enlace para evitar áreas sem cobertura e interferência entre células. Para realizar este dimensionamento, deve-se levar em consideração não somente os aspectos de transmissão, antenas e a frequência a ser utilizada, mas também aspectos aleatórios provenientes do meio em que o sinal está inserido.

Os mecanismos de propagação de ondas eletromagnéticas geralmente podem ser atribuídos à reflexão, difração e espalhamento, quando analisados em larga escala. A maioria dos sistemas de rádio opera em áreas urbanas onde pode não existir uma linha de visada direta entre o Tx e Rx, e onde a presença de prédios altos causa perda severa pela difração. Devido a múltiplas reflexões em obstáculos, as ondas eletromagnéticas trafegam por diferentes caminhos de tamanhos variáveis ocasionando perda por múltiplos caminhos [6]. Essa perda aumenta à medida em que a distância entre Tx e Rx aumenta.

Em um sistema de comunicações móveis, deve-se analisar a atuação dos principais mecanismos de desvanecimento em larga escala, que serão abordados a seguir:

- Reflexão: ocorre quando a onda que se propaga em um determinado meio colide com outro meio de densidades diferentes. Assim, parte da energia da onda é refletida e outra é transmitida. Esse fenômeno acontece, por exemplo, na superfície da Terra, em construções e montanhas.
- Difração: se dá pela capacidade das ondas eletromagnéticas de contornarem os obstáculos, tais como construções ou terrenos elevados ou quando passam através de obstáculos contendo aberturas, como, por exemplo, as folhas das árvores ou qualquer forma de vegetação [5].

O fenômeno de difração pode ser explicado pelo princípio de Huygens, que afirma que todos os pontos em uma frente de onda podem ser considerados como fontes pontuais para a produção de ondas secundárias, e essas ondas secundárias se combinam para produzir uma nova frente de onda na direção da propagação [6].

 Espalhamento: ocorre quando a onda trafega de encontro a objetos de dimensões que são menores que o comprimento de onda fazendo com que a energia do sinal seja redistribuída em várias direções [6].

2.2. MODELOS DE PROPAGAÇÃO

Os modelos de propagação publicados na literatura [6], focam na intensidade média do sinal recebido a uma dada distância do transmissor, bem como, na variabilidade da intensidade do sinal em áreas próximas a um dado local de interesse. Estes modelos são úteis na estimativa da área de cobertura do sinal rádio e são chamados de modelos de propagação com desvanecimento em pequena escala ou em larga escala. No modelo de pequena escala, também conhecido como rápido e de multipercurso, ocorre quando a intensidade do sinal recebido flutua rapidamente a uma distância de ordem de grandeza menor que o comprimento de onda do sinal. Assim, a cada instante e local, o móvel irá

receber uma combinação de ondas de diferentes amplitudes e defasadas entre si [7]. Essa queda no nível do sinal recebido é devido aos vários raios refletidos, multipercurso, ao longo da propagação do sinal. Já o modelo de larga escala, conhecido como lento, está associado as características de propagação do sinal rádio ao longo de grandes distâncias se equiparadas ao comprimento de onda do sinal [7]. Quando a estação móvel se afasta do transmissor, por distâncias da ordem de centenas ou milhares de metros, há uma diminuição gradual da intensidade do sinal recebido devido as obstruções naturais e artificiais, fazendo com que o receptor fique em uma região de sombra eletromagnética [8].

Na figura 1, temos a ilustração do desvanecimento em pequena escala juntamente com as variações em grande escala. Percebe-se que o sinal atenua rapidamente (desvanecimento em pequena escala) enquanto o receptor está em movimento, porém o sinal médio varia mais lentamente com a distância.

FIGURA 1- DESVANECIMENTO EM PEQUENA X LARGA ESCALA [FONTE: RAPPAPORT, 2ª ED., 2008]

2.2.1. DESVANECIMENTO EM LARGA ESCALA

Os efeitos sentidos pelo sinal com desvanecimento em larga escala (ou desvanecimento lento) se dão com base na característica de propagação ao longo de grandes distâncias quando comparadas ao comprimento de onda. Quando o sinal rádio é obstruído, o mesmo irá chegar ao receptor através dos mecanismos de propagação que são: difração, espalhamento e a reflexão[7].

2.2.1.1. PROPAGAÇÃO EM ESPAÇO LIVRE

Segundo Rappaport [6], a propagação de ondas eletromagnéticas no espaço livre é usada para descrever a intensidade do sinal recebido quando não há obstáculos entre o transmissor e o receptor. Assim como a maioria dos modelos de propagação de onda de rádio em grande escala, o modelo em espaço livre prevê que a potência recebida diminui como uma função da distância de separação Tx-Rx elevada a algum expoente. A potência recebida no espaço livre por uma antena receptora que está separada de uma antena transmissora, irradiando, por uma distância *d* é dada pela equação do espaço livre de Friis [6]:

$$P_r(d) = \frac{P_t G_t G_r \lambda^2}{(4\pi)^2 d^2 L'},$$
(2.1)

onde P_t é a potência transmitida, $P_r(d)$ é a potência recebida em função da distância entre o transmissor (Tx) e o receptor (Rx), G_t é o ganho da antena transmissora, G_r é o ganho da antena receptora, d é a distância de separação entre Tx-Rx em metros, L é o fator de perda do sistema (L=1 para o caso ideal) $e\lambda$ é o comprimento de onda em metros.

A equação (2.1), do espaço livre de Friis, mostra que a potência recebida cai conforme o quadrado da distância de separação entre Tx-Rx. Isso implica que a potência recebida cai com a distância em uma taxa de 20 dB/década [6].

A diferença em dB entre a potência transmitida e a recebida é dada por:

$$PL(dB) = 10\log \frac{P_t}{P_r} = -10\log \left[\frac{G_t G_r \lambda^2}{(4\pi)^2 d^2}\right].$$
 (2.2)

2.2.1.2. PERDA DE CAMINHO LOG-DISTÂNCIA

Segundo [6], os modelos de propagação teóricos e baseados em medição indicam que a potência do sinal diminui de forma logarítmica com a distância. A seguir apresenta-se a perda de caminho em grande escala para uma dada separação entre transmissor e receptor, expressa como uma função da distância, usando um expoente de perda de caminho (n):

$$\overline{PL}(d) \propto \left(\frac{d}{d_0}\right)^n \tag{2.3}$$

ou

$$\overline{PL}(dB) = \overline{PL}(d_0) + 10n \log\left(\frac{d}{d_0}\right), \tag{2.4}$$

onde $\overline{PL}(d_0)$ é a potência recebida no ponto de referência d_0 , n representa o expoente de perda de caminho que informa a velocidade com que a perda aumenta em função da distância, d é a distância de separação entre Tx-Rx e d_0 corresponde à distância de referência próxima que é determinada pelas medições perto do transmissor.

2.2.1.3. DISTRIBUIÇÃO LOG-NORMAL

A distribuição log-normal descreve os efeitos aleatórios do sombreamento ao longo de uma distância de separação entre o transmissor e o receptor, conhecido como sombreamento log-normal. Este sombreamento implica que os níveis de sinal medidos em uma separação Tx-Rx específica têm uma distribuição gaussiana em torno da média dependente da distância, como se pode verificar na equação (2.4), onde os níveis de sinal medidos têm valores em unidades em dB [6].

Para qualquer valor de d, a perda de caminho PL(d) em determinado local é aleatória e possui distribuição log-normal (normal em dB) ao redor do valor médio dependente da distância, isto é:

$$PL(dB) = \overline{PL}(d) + X_{\sigma} \tag{2.5}$$

Substituindo na equação (2.5) a expressão encontrada na equação (2.4) para $\overline{PL}(d)$, temos:

$$PL(d)[dB] = \overline{PL}(d_0) + 10nlog\left(\frac{d}{d_0}\right) + X_{\sigma},$$
(2.6)

onde X_{σ} é uma variável aleatória com distribuição gaussiana de média zero (em dB) com desvio padrão σ (em dB).

Uma distribuição normal pode ser definida a partir de sua média (μ) e desvio padrão (σ). Assim, conhecendo estes parâmetros, é possível determinar qualquer probabilidade de ocorrência de uma função que demonstre uma distribuição normal. A seguir é dada a expressão para a função densidade de probabilidade da distribuição normal:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right),\tag{2.7}$$

onde $\mu \in \sigma$ são, respectivamente, a média e a variância de x (em dB).

2.2.2. DESVANECIMENTO EM PEQUENA ESCALA

O desvanecimento em pequena escala é usado para descrever as flutuações rápidas das amplitudes, fases ou atrasos de caminhos múltiplos de um sinal de rádio em um curto período de tempo ou pequena distância. Essas ondas se combinam vetorialmente na antena do receptor, resultando em um sinal que pode variar em amplitude e fase, dependendo da distribuição da intensidade, do tempo relativo de propagação das ondas e da largura de banda do sinal transmitido [6][9].

2.2.2.1. DISTRIBUIÇÃO RAYLEIGH

A distribuição Rayleigh descreve a natureza estatística variável no tempo do envelope de um sinal que sofre desvanecimento uniforme, ou de um componente de caminho múltiplo individual [6].

Dada uma distribuição Gaussiana bidimensional com duas variáveis y e z independentes, de média nula e mesmo desvio padrão σ , na qual o módulo $r = \sqrt{y^2 + z^2}$ é equivalente à envoltória do sinal [10].

De acordo com o autor [10], a distribuição Rayleigh apresenta uma função da densidade de probabilidade (F.D.P.) dada por:

$$p(r) = \frac{r}{\sigma^2} exp\left(\frac{-r^2}{2\sigma^2}\right),\tag{2.8}$$

onde r corresponde à envoltória do sinal, σ é o valor rms da tensão do sinal gaussiano recebido antes da detecção da envoltória e σ^2 é a média temporal da potência do sinal recebido.

A probabilidade de o envelope não ultrapassar o valor especificado R é dada pela função de distribuição acumulada (CDF), que corresponde a integrar a função densidade (2.8) e assim, temos [6]:

$$P(R) = Pr(r \le R) = \int_0^R p(r)dr = 1 - exp\left(\frac{-R^2}{2\sigma^2}\right).$$
 (2.9)

O valor médio da distribuição Rayleigh, isto é, o valor médio absoluto da envoltória, é dado por:

$$r_{m\acute{e}dio} = E[r] = \int_0^\infty rp(r)dr = \sigma \sqrt{\frac{\pi}{2}}.$$
 (2.10)

A variância da distribuição é dada por:

$$\sigma_r^2 = E[r^2] - E^2[r] = \int_0^\infty r^2 p(r) dr - \frac{\sigma^2 \pi}{2}$$

$$\sigma^2 \left(2 - \frac{\pi}{2}\right) = 0.4292\sigma^2.$$
(2.11)

O valor rms do envelope é a raiz quadrada do quadrado da média, ou $\sqrt{2\sigma}$, onde σ é o desvio padrão do sinal gaussiano complexo original antes da detecção do envelope [6].

2.2.2.3. DISTRIBUIÇÃO RICEAN

Em um ambiente de propagação com múltiplos percursos a componente de amplitude dominante pode ser originada tanto de um sinal em visada direta quanto de um sinal sem visada direta e os demais componentes do sinal serão provenientes de caminhos múltiplos, que chegam no receptor em tempos e ângulos distintos. Assim sendo, a distribuição de Rayleigh passa a não descrever de forma apropriada a variação da envoltória do sinal recebido [11]. Deste modo, o sinal em visada direta junto com os sinais de múltiplos caminhos, mais fracos, faz surgir a distribuição Ricean.

A distribuição Ricean é dada por[6]:

$$p(r) = \begin{cases} \frac{r}{\sigma^2} e^{\frac{-(r^2 + A^2)}{2\sigma^2}} I_0\left(\frac{Ar}{\sigma^2}\right) para(A \ge 0, r \ge 0), \\ 0 para(r < 0) \end{cases}$$
(2.12)

onde *A* corresponde à amplitude de pico do sinal dominante e I_0 afunção de Bessel modificada de ordem zero.

A análise deste modelo é bem parecida com a realizada para a distribuição Rayleigh, mas com a adição de um termo constante [5]. A distribuição Ricean normalmente é descrita em termos de um parâmetro definido como razão entre a potência de sinal determinístico e a variância do caminho múltiplo. Ela é dada por $K = \frac{A^2}{2\sigma^2}$, ou, em termos de dB [6],

$$K(dB) = 10\log \frac{A^2}{2\sigma^2},$$
 (2.13)

onde K é conhecido como fator Ricean.

As distribuições de amplitude do canal com desvanecimento riceano para diferentes fatores *K* é mostrada na Figura 2. Desvanecimentos mais intensos são claramente menos prováveis que no canal com desvanecimento Rayleigh e a probabilidade de ocorrência delas decresce na medida em que o fator *K* aumenta [5].

FIGURA 2-DISTRIBUIÇÃO DA AMPLITUDE PARA O CANAL DE RICEAN [FONTE: SIMON HAYKIN E MICHAEL MOHER - 2008]

2.2.2.4. DISTRIBUIÇÃO NAKAGAMI-M

Entre as diversas distribuições usadas para modelagem dos sinais que apresentam desvanecimento, a distribuição de Nakagami-m, ou distribuição-m, tem recebido uma atenção especial por ser um modelo puramente empírico e por não se fundamentar em resultados derivados das considerações físicas da propagação rádio [12].

Considerando uma envoltória r com distribuição Nakagami-m, sua função de densidade de probabilidade é dada por:

$$p(r) = \frac{2}{\Gamma(m)} \left(\frac{m}{\Omega}\right)^m r^{2m-1} exp\left(\frac{-m}{r}r^2\right), r \ge 0$$
(2.14)

onde Γ [.] representa a função Gama definida como:

$$\Gamma[m] = \int_0^\infty x^{m-1} exp(-x) dx \tag{2.15}$$

e o parâmetro m, chamado de fator de desvanecimento, é expresso por:

$$m = \frac{(\Omega)^2}{Var(r^2)}, m \ge \frac{1}{2}$$

$$(2.16)$$

em que o parâmetro Ω , definido o controle de propagação (controlling spread), é dado por :

$$\Omega = E(r^2). \tag{2.17}$$

O parâmetro m (shape parameter), representa o grau de desvanecimento sofrido pelo sinal ao se propagar em um ambiente que possui múltiplos percursos. Deste modo, pode-se dizer [8]:

- (m < 1): desvanecimento é considerado mais severo do que o desvanecimento descrito no modelo Rayleigh, que é equivalente a (m = 1);
- (m > 1): as flutuações da intensidade do sinal diminuem em comparação ao desvanecimento Rayleigh e portanto, ocorre um desvanecimento menos severo;
- $(m \rightarrow \infty)$: considera-se um ambiente livre de desvanecimento.

Esta distribuição-m pode ser relacionada com as outras distribuições vistas até o momento. Para o caso de m = 1, a distribuição de Nakagami irá se associar a uma distribuição Rayleigh. Já a associação da distribuição Nakagami com a Rice se dá pelo relacionamento dos parâmetros $k \in \sigma^2$, da Rice, com os dois parâmetros $m \in \Omega$ da Nakagami. Este relacionamento é mostrado a seguir [8][13]:

$$k = \frac{\sqrt{m^2 - m}}{m - \sqrt{m^2 - m}}, m \ge 1e\sigma^2 = \frac{\Omega}{2} \left(1 - \sqrt{1 - m^{-1}} \right)$$
(2.18)

2.2.2.5. DISTRIBUIÇÃO WEIBULL

A distribuição de Weibull foi originalmente aplicada para modelos estatísticos de análise de confiabilidade. Porém, devido à sua simplicidade e flexibilidade, sua utilização foi ampliada para os sistemas de comunicação sem fio onde os canais sofrem desvanecimento devido aos multipercursos.

Portanto, uma variável aleatória x segue a distribuição Weibull se sua função de densidade de probabilidade é dada por [14]:

$$f(x) = \frac{\gamma}{\alpha} \left(\frac{x-\mu}{\alpha}\right)^{\gamma-1} e^{-\left(\frac{(x-\mu)}{\alpha}\right)^{\gamma}}, x \ge \mu; \gamma, \alpha > 0$$
(2.19)

onde:

 γ : representa o parâmetro forma (do inglês - *shape parameter*), que representa o declive do gráfico de Weibull. Se $\gamma = 1$, a distribuição Weibull é equivalente à distribuição exponencial. Se $\gamma = 2$, a distribuição é equivalente a uma distribuição de Rayleigh. E por fim, para valores γ próximos de 3,6, a distribuição Weibull se assemelha em forma a uma distribuição normal [15];

 α : é o parâmetro escala (*scale parameter*), também chamado de parâmetro de vida característica;

 µ: é o parâmetro de localização (*location parameter*), também chamado de vida útil garantida. É o valor limite abaixo do qual a probabilidade de falha é zero.

Para o caso onde $\mu = 0$ e $\alpha = 1$ é chamado de distribuição padrão de Weibull sendo representada por [14]:

$$f(x) = \gamma(x)^{\gamma - 1} e^{-(x)^{\gamma}}, x \ge 0; y > 0$$
(2.20)

Já no caso $\mu = 0$ é chamado de distribuição de Weibull de dois parâmetros e é representada por:

$$f(x) = \frac{\gamma}{\alpha} \left(\frac{x}{\alpha}\right)^{\gamma-1} e^{-\left(\frac{(x)}{\alpha}\right)^{\gamma}}.$$
(2.21)

Na figura 3 é representado o gráfico da função de densidade de probabilidade Weibull para diferentes valores para o parâmetro forma (γ):

FIGURA 3-DENSIDADE DE WEIBULL - FONTE: SHANKAR, P. MOHANA - FADING AND SHADOWING IN WIRELESS SYSTEM – EDITORA SPRINGER, 2012 – PÁG.43]

2.3. SONDAGEM DO CANAL EM BANDA ESTREITA

Com intuito de realizar planejamento das redes de sistemas móveis de maneira mais eficientes é extremamente importante que se conheça as características de propagação do canal rádio. Para isto, se faz necessário realizar a sondagem do canal estudado. Este processo é dado por alguns parâmetros estatísticos que irão descrever o comportamento do sinal ao percorrer o canal. Os parâmetros utilizados para realizar a caracterização do canal e estimar seu desempenho na distribuição Rayleigh são: taxa de cruzamento de nível e duração média de desvanecimentos [11].

2.3.1. TAXA DE CRUZAMENTO DE NÍVEL

A taxa de cruzamento de nível (do inglês, *level crossing rate* – LCR) é definida como a taxa esperada na qual um envelope recebido, normalizado em relação a seu valor eficaz (*rms*), cruza um determinado nível de limiar estabelecido. Esse nível pode ser em uma direção positiva (ou negativa), durante um certo período de tempo [11].

Dada uma distribuição Rayleigh, a expressão para qual esse parâmetro será representado é dada através do número médio de cruzamentos por segundo (N_R). Assim o LCR é caracterizado como [11]:

$$N_R = \int_0^\infty \dot{r} p(R, \dot{r}) d\dot{r}, \qquad (2.22)$$

onde \dot{r} é a derivada de primeira ordem do sinal resultante recebido e R é o nível do limiar de interesse.

A PDF conjunta $p(R, \dot{r})$ é representada por:

$$p(R,\dot{r}) = \int_{-\infty}^{+\infty} \int_{0}^{2\pi} p(R,\dot{r},\theta,\dot{\theta}) d\theta d\dot{\theta}.$$
 (2.23)

O valor para $p(R, \dot{r})$ que pode ser substituído na equação (2.23) é dado por:

$$p(R,\dot{r}) = p_r(R)p_r(\dot{r}).$$
 (2.24)

Para os valores de R e \dot{r} independentes. A taxa de cruzamento esperada (média) no nível R é então dada por:

$$N_R = \sqrt{\frac{\pi}{\sigma^2}} R f_m exp\left(\frac{-r^2}{2\sigma^2}\right).$$
(2.25)

Sabendo que $2\sigma^2$ é o valor médio quadrático e, portanto, $\sqrt{2}\sigma$ é o valor RMS. Assim, a equação (2.25) pode ser expressada como:

$$N_R = \sqrt{2\pi} f_m \rho exp(-\rho^2).$$
 (2.26)

Onde:

$$\rho = \frac{R}{\sqrt{2}\sigma} = \frac{R}{R_{RMS}}.$$
(2.27)

Sendo, $f_m = \frac{v}{\lambda}$ máximo de desvio Doppler na frequência, v: velocidade do móvel e ρ : valor do nível R especificado, normalizado em relação à amplitude rms do sinal.

2.3.2. DURAÇÃO MÉDIA DE DESVANECIMENTO

A duração média de desvanecimento (*average fade duration* – AFD) é definida como o período médio de tempo na qual o envelope do sinal está abaixo de um nível R[11]. A seguir (Figura 4), é ilustrada a duração média deste desvanecimento e o período médio de um desvanecimento abaixo desse nível especificado.

FIGURA 4-PARÂMETROS DEFINIDOS NO LCR E AFD – FONTE: PARSONS, JOHN DAVID. 2000. THE MOBILE RADIO PROPAGATION CHANNEL – 2ª EDIÇÃO

A fração geral de tempo em que o sinal está abaixo deste nível é $P_r(R)$ e, portanto, o AFD é dado por:

$$E\{\tau_R\} = \frac{P_r(R)}{N_R},\tag{2.28}$$

onde τ_R é a duração média abaixo de qualquer nível especificado.

Substituindo o valor de N_R na equação (2.28), temos:

$$E\{\tau_R\} = \sqrt{\frac{\sigma^2}{\pi} \frac{exp\left(\frac{R^2}{2\sigma^2}\right) - 1}{Rf_m}}.$$
(2.29)

De forma alternativa, ao multiplicar por f_m é encontrado a duração média expressa em comprimentos de onda. Sendo representada da seguinte forma:

$$L_R = \sqrt{\frac{\sigma^2}{\pi} \frac{exp\left(\frac{R^2}{2\sigma^2}\right) - 1}{R}}.$$
(2.30)

A equação (2.30) pode ser reescrita em valor rms:

$$L_R = \frac{exp(\rho^2) - 1}{\rho\sqrt{2\pi}}$$
(2.31)

CAPÍTULO 3

AVALIAÇÃO DE DISTRIBUIÇÕES: TESTE QUI-QUADRADO

O teste qui-quadrado (x^2) foi desenvolvido por Karl Pearson por volta de 1900 como sendo um teste estatístico que verifica a frequência com que um evento observado, em uma amostra, irá se desviar consideravelmente ou não da frequência esperada [22]. Pearson propôs a seguinte formulação para medir a discrepâncias entre as frequências observadas e esperadas:

$$x^{2} = \sum_{i=1}^{k} \left[\frac{(o_{i} - e_{i})^{2}}{e_{i}} \right],$$
(3.1)

onde *o* representa a frequência observada, *e* representa a frequência esperada e *k* representa o número de categorias usadas na classificação dos dados.

Observa-se que o valor (o - e) = d representa o desvio e portanto, pode-se reescrever a equação (3.1) da seguinte forma [22]:

$$x^{2} = \sum_{i=1}^{k} \left[\frac{(d)^{2}}{e_{i}} \right]$$
(3.2)

As hipóteses a serem testadas na realização do teste são apresentadas a seguir:

- Hipótese nula: A frequência observada não difere da frequência esperada. E assim, não há diferença entre as frequências (contagens) e associações dos grupos.
- Hipótese alternativa: A frequência observada diverge da frequência esperada. E, portanto, existe diferença entre as frequências.

A distribuição do teste qui-quadrado é estabelecida com base no parâmetro chamado de grau de liberdade ($\varphi = k - 1$), que determina a forma como a curva irá se apresentar [23]. Uma distribuição com um grau de liberdade pequeno é bastante assimétrica, tornando-se mais simétrica à medida que o parâmetro φ aumenta. Dependendo do valor de φ , teremos o seguinte distribuição apresentada na figura 5:

FIGURA 5-CONFIGURAÇÃO GRÁFICA DO TESTE QUI-QUADRADO - [FONTE: MARTINS, G.A; DOMINGUES, O. - ESTATÍSTICA GERAL E APLICADA]

Esta distribuição é encontrada em forma de tabela (anexo I), onde é possível encontrar a abscissa da distribuição (valor crítico) através do grau de liberdade (φ) e a área na cauda à direita (probabilidade) [23]. Conforme representada pela figura 6:

FIGURA 6-ANÁLISE DA DISTRIBUIÇÃO QUI-QUADRADO - [FONTE: MARTINS, G.A; DOMINGUES, O. - ESTATÍSTICA GERAL E APLICADA]

O valor da abscissa é encontrado através da intercessão destes valores na tabela da distribuição conforme demostrado pela figura 7.

FIGURA 7 - REPRESENTAÇÃO PARA ENCONTRAR O VALOR CRÍTICO NA TABELA DO QUI-QUADRADO - [FONTE: MARTINS, G.A; DOMINGUES, O. - ESTATÍSTICA GERAL E APLICADA]

No teste qui-quadrado é realizada a comparação do valor x^2 calculado, obtido diretamente das amostras (equação 3.1), com o valor x^2 tabelado (anexo I). Este valor tabelado representa o valor crítico que determina se uma hipótese estudada será aceita ou não. Portanto, a regra de decisão é dada por:

- $x^2 calc \ge x^2 tab$: rejeita a hipótese H_0 , ou seja, os desvios são significativos.
- x²calc < x²tab: Aceita hipótese H₀, ou seja, admite-se que os desvios não são significativos.

3.1. TIPOS DE TESTES QUI-QUADRADO

O qui-quadrado (x^2) é usado para avaliar dois tipos de comparação que são: qualidade de ajuste (aderência) e independência.

3.1.1. TESTE DE ADERÊNCIA

O teste de aderência ou de qualidade do ajuste consiste em testar a adequabilidade de um dado modelo probabilístico a um conjunto de dados, ou seja, testar hipóteses.

As hipóteses a serem testadas correspondem a:

- *H*₀: quando os dados da amostra aderem à distribuição
- *H*₁: quando os dados da amostra não aderem à distribuição

A partir de uma amostra $x_1, ..., x_n$ da variável aleatória X que caracteriza a população P e a partir da qual, queremos testar a hipótese é dada por [24]:

$$H_0: P = P_0$$
 (3.3)

onde, P₀ representa distribuição de probabilidades específica.

No caso de variáveis qualitativas e variáveis discretas, a variável X de interesse é categorizada em classes $A_1, A_2, ..., A_s$ e com probabilidades $p_i = P(X \in A_i)$, com i = 1, 2, ..., s. Então, a hipótese H_0 pode ser formulada de modo equivalente como [24]:

$$H_0: P_1 = P_{10}, P_2 = P_{20}, \dots, P_s = P_{s0},$$
(3.4)

onde P_{i0} são os valores especificados pela hipótese nula, ou seja, são as probabilidades conhecidas que determinam P_0 [24].

A estatística do teste pode ser escrita com base na equação (3.1):

$$x^{2} = \sum_{i=1}^{k} \left[\frac{(o_{i} - e_{i})^{2}}{e_{i}} \right],$$
(3.5)

onde o_i representa o valor efetivamente observado para a classe A_i e e_i representa o valor esperado, perante a hipótese H_0 , para a classe A_i . Como temos n observações, os valores esperados sob H_0 são apresentados como [24]:

$$E_i = n \times p_{i0}, i = 1, 2, \dots, s.$$
 (3.6)

Portanto, se a hipótese H_0 for verdadeira, pode-se provar que x^2 tem aproximadamente uma distribuição qui-quadrada contendo (s - 1) graus de liberdade e este valor calculado será menor à medida que os valores esperados se aproximarem dos observados. Será rejeitada a hipótese H_0 se o valor da estatística (3.5) for grande, no sentido que é possível encontrar um valor c na tabela (anexo I), tal que $P(x^2(s - 1) > c) = \alpha$, para um dado nível de significância fixado [24].

3.1.2. TESTE DE INDEPENDÊNCIA

Este tipo de teste verifica se há independência entre duas variáveis medidas nas mesmas unidades experimentais. Com isso, as hipóteses a serem testadas são:

- *H*₀: as variáveis são independentes
- *H*₁:as variáveis não são independentes

Será denominado p_{ij} a probabilidade de um indivíduo ser classificado nas categorias i, i = 1, ..., r e j, j = 1, ..., s, simultaneamente. Já as probabilidades $p_{i.}$ e $p_{.j}$ serão classificadas como probabilidades marginais. Portanto, a hipótese de independência pode ser escrita na seguinte forma [24]:

- $H_0(comp_{ij} = p_{i.}p_{.j})$ para todo par (i, j);
- $H_1(comp_{ij} \neq p_i p_j)$ para algum par (i, j).

Vale lembrar que $p_{i.} = \sum_{j=1}^{s} p_{ij}$ e $p_{.j} = \sum_{i=1}^{r} p_{ij}$.

A estatística do teste é dada por:

$$x^{2} = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{(o_{ij} - e_{ij})}{e_{ij}}.$$
(3.7)

A estatística a ser usada é dada pela equação (3.7), que terá, sob a hipótese H_0 , uma distribuição qui-quadrado com $v = (r - 1) \times (s - 1)$ graus de liberdade. Será rejeitado a hipótese H_0 se o valor observado da estatística for maior do que um valor crítico, dado pela tabela do anexo I, fixado um valor do nível de significância α [24].

CAPÍTULO 4

PROCESSAMENTO DOS DADOS E RESULTADOS

O processo de fitting de dados foi realizado com base na campanha de medições descritas no trabalho [2]. Uma antena transmissora, na época da medição, foi instalada no terraço do prédio da reitoria da Universidade Federal Fluminense (UFF) no bairro de Icaraí, Niterói (RJ). A antena utilizada foi uma antena painel setorial Hyperlink HG3515P-120 com banda entre 3,4 GHz e 3,7 GHz. Essa antena foi conectada a um amplificador de 37,5 dB, recebendo o sinal a ser transmitido de um gerador vetorial de sinal *Anritsu* MG3700A. Do lado do receptor, foi utilizado um carro que percorreu as ruas de Icaraí, de acordo com as rotas que estão representadas na Fig. 8. A recepção é feita a partir de uma antena omnidirecional *Rubber Duck* ligado na bateria do carro adaptado com alternador de corrente e inversor de tensão. Essa antena foi conectada a um amplificador de baixo ruído de 30 dB de ganho que entregava o sinal para o analisador de sinais *Anritsu Signature* MS2781B. Acoplado ao receptor havia um localizador por GPS (*Global Positioning System*) a fim de permitir uma marcação mais precisa do espaço percorrido para cada medida.

Em um primeiro momento, dividiu-se o cenário de estudo em rotas de forma a se observar a variação da distância em relação à antena transmissora localizada na no prédio da Reitoria da UFF. Tal divisão foi configurada conforme apresentada na figura 8:

FIGURA 8 – CENÁRIO DE ESTUDO DIVIDIDO EM ROTAS - FONTE: GOOGLE EARTH
Posteriormente, foram realizadas as análises das funções densidades de probabilidades (F.D.P.) para a estatística de desvanecimento lento ou rápido, onde foram buscadas as F.D.P.'s que mais se ajustaram aos dados medidos. E além destas análises, também foram realizadas as sondagens dos parâmetros do canal rádio móvel em faixa estreita para a distribuição Rayleigh.

4.1. DESVANECIMENTO EM LARGA ESCALA

Neste primeiro cenário de estudo, a antena transmissora, instalada no topo da reitoria da Universidade Federal Fluminense, foi utilizada para verificar a variação na média local do sinal devido ao sombreamento ocasionado por obstáculos naturais e artificiais ao longo de todo o percurso definido entre o transmissor e o receptor.

Percebe-se que as rotas pares da Rua Mariz e Barros (Fig. 10) e Rua Presidente Backer (Fig. 12), possuem uma grande variação no nível do sinal se comparadas com as rotas ímpares. Nestas rotas transversais é verificado um maior nível de sinal para as distâncias curtas, ou seja, onde é possível que se tenha algum tipo de visibilidade com a antena transmissora ou os raios chegam com pouca reflexão. À medida que avançamos no percurso da rua, é verificado uma queda acentuada do sinal devido ao aumento da distância em relação à antena transmissora e também devido as componentes transversais no caminho, o que pode causar eventuais obstáculos para a visada direta do móvel. Essas intermitências no sinal geram a perda no percurso e isto, cria uma certa dificuldade para se traçar a reta de melhor ajuste com apenas uma única inclinação para todos os pontos medidos.

Já para as rotas ímpares da Praia de Icaraí (Fig. 9) e Av. Roberto Silveira (Fig. 11) verificou-se que estas apresentam uma perda de percurso com uma queda menos acentuada no nível do sinal, se comparadas com as rotas pares. Assim, como nas rotas pares, também foram encontrados alguns pontos com elevação abrupta do sinal.

Sabendo que a perda no percurso é linear com a distância em escala logarítmica, a partir da variação lenta do sinal, foram traçadas retas de ajustes utilizando o método dos mínimos quadrados com base na matriz de medição de forma a se obter as retas que melhor se ajustam à F.D.P. Gaussiana. Às descontinuidades do sinal ao longo do percurso gerou uma certa dificuldade de traçar a reta da perda de percurso com apenas uma única inclinação e com isso, buscou-se traçar mais retas para tentar uma melhor adequação ao sinal medido. O objetivo é tentar a aderência do maior número de pontos sobre a reta e além disso, busca-se representar uma mudança no expoente da perda de percurso no ambiente, visto que, este expoente é um indicativo da velocidade com que essa perda aumenta em função da distância de separação da antena transmissora e receptora. Essas retas estão divididas da seguinte forma: a primeira reta varrendo todas as amostras da matriz de medições, a segunda reta varrendo metade dos valores medidos e por fim, a terceira reta varrendo o restante das amostras. A seguir são apresentadas as retas de ajustes encontrados para as rotas em Icaraí.

(A) MELHOR AJUSTE CONSIDERANDO O PONTO DE MUDANÇA EM -0,1 NA PRAIA DE ICARAÍ

(B) MELHOR AJUSTE CONSIDERANDO O PONTO DE MUDANÇA EM -0,05 NA PRAIA DE ICARAÍ

(C) MELHOR AJUSTE CONSIDERANDO O PONTO DE MUDANÇA EM O NA PRAIA DE ICARAÍ FIGURA 9 RETAS DE AJUSTE PARA A ROTA 1 - PRAIA DE ICARAÍ

Nas Figuras 9(a) a 9(c) são mostradas as retas de melhor ajuste para os pontos de medições na Praia de Icaraí. Percebe-se que a reta da Figura 9(b) é a que melhor se aproxima dos pontos das amostras pois, a partir do teste do qui-quadrado, considera-se que o ponto de mudança em -0,05 é o que possui melhor aderência aos valores medidos do sinal em larga escala mesmo havendo deficiência no ajuste para todos os dados plotados. Já nas Figuras 9(a) e 9(c), não se percebe esta aderência dos valores medidos.

(A) Melhor Ajuste considerando o ponto de mudança em 0,07 na Rua Mariz e Barros

(B) MELHOR AJUSTE CONSIDERANDO O PONTO DE MUDANÇA EM 0,06 NA RUA MARIZ E Barros

(C) MELHOR AJUSTE CONSIDERANDO O PONTO DE MUDANÇA EM 0,05 NA RUA MARIZ E BARROS

A mesma análise foi realizada para a rota da Rua Mariz e Barros e nas Figuras 10(a) a 10(c) são apresentadas as retas de melhor ajuste para os pontos de medições. A reta que apresentou melhor aderência para o cenário de simulação é da Figura 10(b) com o ponto de mudança em 0,06.

(A) Melhor Ajuste considerando o ponto de mudança em 0,15 na Rua Roberto Silveira

(B) MELHOR AJUSTE CONSIDERANDO O PONTO DE MUDANÇA EM 0,07 NA RUA ROBERTO SILVEIRA

(C) MELHOR AJUSTE CONSIDERANDO O PONTO DE MUDANÇA EM 0,02 NA RUA ROBERTO SILVEIRA

Repetindo a análise para a rota da Rua Roberto da Silveira foram encontradas as retas que melhor se ajustaram aos pontos da matriz de medição através das Figuras 11(a) a 11(c). A reta que possui melhor aderência para o cenário de simulação é da Figura 11(b) com o ponto de mudança em 0,07, pois consegue aderir ao maior número de pontos.

(A) Melhor Ajuste considerando o ponto de mudança em -0,21 na Rua Presidente Backer

(B) MELHOR AJUSTE CONSIDERANDO O PONTO DE MUDANÇA EM -0,25 NA RUA PRESIDENTE BACKER

(C) MELHOR AJUSTE CONSIDERANDO O PONTO DE MUDANÇA EM -0,14 NA RUA PRESIDENTE BACKER

Por fim, para a rota da Rua Presidente Backer, as retas de melhor ajuste para os pontos de medições estão representadas nas Figuras 12(a) a 12(c). A reta que melhor se ajustou aos pontos medidos é da Figura 12(a) com o ponto de mudança em -0,21, pois conseguiu aderir ao maior número de pontos.

Depois de traçar as retas a partir do método dos mínimos quadrados, pensando em encontrar o coeficiente da perda do percurso obtido para o ambiente urbano e a reta que melhor se aproxima aos pontos medidos, foram utilizados os comandos *polyfit* e *polyval* do Matlab. O comando *polyfit* irá retornar os coeficientes para um polinômio p(x) de grau n que é o melhor ajuste em um sentido de mínimos quadrados para os dados em y. Já o comando *polyval* irá analisar o polinômio criado no ponto x.

A partir destes comandos, foram encontradas as equações que descrevem as semi-retas para as rotas sondadas e os respectivos coeficientes da perda do percurso. Segue abaixo o quadro resumo para estes cenários:

ROTAS	FATOR ATENUAÇÃO SEMI-RETA1	EQUAÇÃO SEMI- RETA 1	FATOR ATENUAÇÃO SEMI-RETA 2	EQUAÇÃO SEMI- RETA 2
Rota 1	4,909	p = -49,09x - 50,78	2,49	p = 24,91x - 37,34
Rota 2	64,62	p = -646,26x - 57,80	1,384	p = -13,84x - 93,66
Rota 3	1,186	p = -11,86x - 92,66	1,527	p = -15,27x - 94,33
Rota 4	16,79	p = -167,91x - 129,54	1,685	p = -16,85x - 97,12

TABELA 1- QUADRO RESUMO REFERENTE AO FATOR ATENUAÇÃO E EQUAÇÕES DAS RETAS DA PERDA DE PERCURSO

Buscando uma melhor adequação polinomial dos pontos ao modelo logdistância apresentado anteriormente, aumentamos o grau do coeficiente da perda de percurso através do comando do Matlab *polyfit*, na qual foi realizado o aumento do expoente da perda com o intuito de se encontrar uma melhor aderência. Foi verificado uma melhor adequação dos dados medidos em comparação a reta original do modelo log-distância, o que se justifica devido ao maior número de graus de liberdade do polinômio encontrado. Nas Figuras 13 a 16 são apresentados os resultados encontrados para as rotas estudadas.

FIGURA 13 - RETA DE AJUSTE PARA PRAIA DE ICARAÍ (ROTA 1) POLINÔMIO DE GRAU 3

Com base em todas as amostras da tabela de medição, utilizando o comando *polyfit*, para a rota 1 referente a Rua Praia de Icaraí foi gerado um polinômio de 3° grau de forma a obter um maior número de pontos incidentes sobre a parábola e assim, obter uma maior aderência dos pontos sobre a curva ao utilizar estes comandos. A seguir é apresentado o polinômio de grau 3 gerado para todo o percurso da Praia de Icaraí:

$$p = 10^3 \times (2,72x^3 + 0,365x^2 - 0,10x - 0,05)$$
(4.1)

A rota da Praia de Icaraí é caracterizada por ser uma rota predominantemente longitudinal em relação ao transmissor. Com isso, deveria apresentar os dados mais próximos ao modelo de log-distância. No entanto, é possível constatar com base na Figura 13 que não há uma boa adequação dos pontos com relação a curva. No início da trajetória verifica-se que há um crescimento inicial da potência em relação à distância e logo depois há um decréscimo da potência do sinal. Isso pode ser explicado devido há uma certa variação nas alturas dos prédios na orla, o que gera ocasionais modificações nos obstáculos até o transmissor.

FIGURA 14 - RETA DE AJUSTE PARA RUA MARIZ E BARROS (ROTA 2) A PARTIR DO POLINÔMIO DE GRAU 3

Para a rota da Mariz e Barros referente à Fig. 14, também foi implementado no programa os comandos *polyfit* e *polyval*, e a curva que melhor apresentou aderência aos pontos medidos corresponde a um polinômio de 3° grau. A seguir é apresentado o polinômio de grau 3 gerado no Matlab:

$$p = 10^5 \times (-1,25x^3 + 0,33x^2 - 0,03x - 0,0001)$$
(4.2)

FIGURA 15- RETA DE AJUSTE PARA RUA ROBERTO SILVEIRA (ROTA 3) A PARTIR DO POLINÔMIO DE GRAU 3

Para a rota Roberto Silveira (Fig. 15), foi gerado um polinômio de 3° grau de forma a obter um maior número de pontos incidentes sobre a curva. Nesta rota, é possível constatar que a curva não possui uma aderência muito boa aos pontos de medição, mesmo aumentando o grau do polinômio. O polinômio de grau 3 encontrado é apresentado a seguir:

$$p = -891,29x^3 + 173,32x^2 - 0,105x - 94,82$$
(4.3)

FIGURA 16-RETA DE AJUSTE PARA RUA PRESIDENTE BACKER (ROTA 4) A PARTIR DO POLINÔMIO DE GRAU 3

Para a rota Presidente Backer (Fig.16), a curva que melhor apresentou uma boa adequação aos pontos medidos corresponde a um polinômio de 3° grau. Segue o polinômio de grau 3 encontrado:

$$p = 10^3 \times (-4,86x^3 - 2,27x^2 - 0,36 - 0,11)$$
(4.4)

4.2. DESVANECIMENTO EM PEQUENA ESCALA

Para esta segunda etapa de estudo, foram determinadas as estatísticas para o desvanecimento em pequena escala através da comparação da F.D.P. Rayleigh calculada a partir da média móvel do sinal através do teste qui-quadrado e posteriormente, foram realizadas as comparações das funções de densidade de probabilidade (sendo elas: Gauss, Rayleigh, Rice, Nakagami e Weibull) a partir da variabilidade rápida do sinal através do mesmo método para as rotas.

A seguir é apresentada a variação rápida do sinal, a partir da programação condizente, para o sinal da média móvel nas rotas utilizando a F.D.P. Rayleigh. Os resultados encontrados para cada rota são apresentados nas Figuras 17, 18, 19 e 20.

(A) VARIAÇÃO EM PEQUENA ESCALA PARA A ROTA 1 PRAIA DE ICARAÍ

(A) VARIAÇÃO EM PEQUENA ESCALA PARA A ROTA 2 MARIZ E BARROS

(B) HISTOGRAMA DOS DADOS E F.D.P. RAYLEIGH PARA ROTA 2 FIGURA 18 - VARIABILIDADE RÁPIDA - ROTA 2 MARIZ E BARROS

(A) VARIAÇÃO EM PEQUENA ESCALA PARA A ROTA 3 ROBERTO SILVEIRA

(B) HISTOGRAMA DOS DADOS E F.D.P. RAYLEIGH PARA ROTA 3 FIGURA 19 - VARIABILIDADE RÁPIDA - ROTA 3 ROBERTO SILVEIRA

(A) VARIAÇÃO EM PEQUENA ESCALA PARA A ROTA 4 PRESIDENTE BACKER

Foi verificado que ao comparar a média móvel com a distribuição Rayleigh o sinal apresentou intensidades distintas ao longo de cada percurso. Para o desvanecimento em pequena escala, a cada instante e local, o móvel irá receber uma combinação de ondas de amplitudes e fases diferentes. Essa queda no nível do sinal recebido, verificado nas Figuras 17 a 20, ocorrem devido a uma maior quantidade de obstáculos ao longo do caminho acarretando em vários raios refletidos, multipercurso, ao longo da propagação do sinal. Observou-se também que há picos de intensidade do sinal em esquina com a praia ou em pontos onde pudesse haver algum tipo de visibilidade com à antena transmissora.

Nesta próxima análise para o desvanecimento em pequena escala, para cada uma das rotas estudadas, foram retirados os níveis médios do sinal de forma que seja apenas realizada a análise de variabilidade rápida do mesmo. A seguir são apresentados os resultados que melhor e pior se ajustaram, segundo o teste qui-quadrado, para cada rota considerando as FDP's (Figuras 21 a 24).

O grau de adequabilidade destas funções densidade de probabilidades (F.D.P.'s) calculadas em comparação aos valores medidos do sinal de variabilidade rápida, foi feito com base no teste de aderência do método dos mínimos quadrados com nível de significância de 5%, com o objetivo de verificar se as F.D.P.'s passam ou não no teste de hipóteses. Para determinar se a FDP passou ou não no teste, deve-se verificar se o valor encontrado é menor que o valor crítico tabelado do teste qui-quadrado (anexo I).

(A) MELHOR E PIOR AJUSTE DA FDP RICE - ROTA 1 PRAIA DE ICARAÍ

(B) MELHOR E PIOR AJUSTE DA FDP RAYLEIGH - ROTA 1 PRAIA DE ICARAÍ

(C) MELHOR E PIOR AJUSTE DA FDP GAUSS - ROTA 1 PRAIA DE ICARAÍ

(D) MELHOR E PIOR AJUSTE DA FDP NAKAGAMI - ROTA 1 PRAIA DE ICARAÍ

(E) MELHOR E PIOR AJUSTE DA FDP WEIBULL - ROTA 1 PRAIA DE ICARAÍ FIGURA 21- SETORES QUE MELHOR E PIOR SE AJUSTARAM A ROTA 1 - PRAIA DE ICARAÍ

Trecho 1	Quantidade total de setores no trecho: 171				
Total PDF que passou no Teste Qui	Gauss	Rayleigh	Rice	Nakagami	Weibull
(95%)	71	52	32	31	61
Total de vezes que a PDF passou no	Gauss	Rayleigh	Rice	Nakagami	Weibull
teste Qui com o menor valor	55	4	1	6	12
Menor valor de Qui para cada PDF	Gauss	Rayleigh	Rice	Nakagami	Weibull
	7,33	9,82	17,21	26,66	12,06
Majar valar da Qui para cada PDE	Gauss	Rayleigh	Rice	Nakagami	Weibull
iviaior valor de Qui para cada PDF	111,01	112,96	102,71	111,74	103,43

TABELA 2- COMPARATIVO DAS FDP'S PARA A ROTA 1 - PRAIA ICARAÍ

Os valores do teste qui-quadrado em cada setor referente a rota 1 (Praia de Icaraí) para as FDP's encontram-se no anexo II.

Através da Tabela 2, é possível verificar que as distribuições que melhor se ajustaram, ou seja, as que apresentaram o menor valor do qui-quadrado para a rota 1 foram: Gauss e Rayleigh. Por ser uma rota longitudinal ao transmissor, há setores que serão melhor descritos pela distribuição de Gauss onde há algum tipo de visibilidade em relação ao Tx e a outros setores que serão melhor descritos pela distribuição de Gauss onde há algum tipo de visibilidade em onde não há componente dominante do sinal devido a presença de objetos espalhadores.

(A) MELHOR E PIOR AJUSTE DA FDP RICE - ROTA 2 RUA MARIZ E BARROS

(B) MELHOR E PIOR AJUSTE DA FDP RAYLEIGH - ROTA 2 RUA MARIZ E BARROS

(C) MELHOR E PIOR AJUSTE DA FDP GAUSS - ROTA 2 RUA MARIZ E BARROS

(D) MELHOR E PIOR AJUSTE DA FDP NAKAGAMI - ROTA 2 RUA MARIZ E BARROS

FIGURA 22- SETORES QUE MELHOR E PIOR SE AJUSTARAM A ROTA 2 - RUA MARIZ E BARROS

Trecho 2	Quantidade total de setores no trecho: 120				
Total PDF que passou no Teste Qui	Gauss	Rayleigh	Rice	Nakagami	Weibull
(95%)	120	120	117	112	120
Total de vezes que a PDF passou no	Gauss	Rayleigh	Rice	Nakagami	Weibull
teste Qui com o menor valor	1	9	12	2	96
Manaryalar da Qui nara cada DDE	Gauss	Rayleigh	Rice	Nakagami	Weibull
Menor valor de Qui para cada PDF	4,26	3,13	2,07	15,47	5,32
Major valor do Qui para cada BDE	Gauss	Rayleigh	Rice	Nakagami	Weibull
Walor valor de Qui para cada PDF	99,41	85,11	98,76	111,21	91,15

TABELA 3 - COMPARATIVO DAS FDP'S PARA A ROTA 2 - RUA MARIZ E BARROS

Os valores do teste qui-quadrado em cada setor referente a rota 2 (Rua Mariz e Barros) para as FDP's encontram-se no anexo III.

A partir da Tabela 3, é possível verificar que as distribuições que melhor se ajustaram a rota 2 foram: Rice e Rayleigh. No início da trajetória a distribuição Rice é a melhor devido à presença da componente em visada direta que apresenta intensidade muito superior às componentes originadas dos múltiplos percursos. À medida que percorremos a trajetória da Rua Mariz e Barros, ou seja, aumentamos à distância do transmissor e encontramos um maior número de obstáculos, a distribuição de Rayleigh passa a ser a mais adequada.

(A) MELHOR E PIOR AJUSTE DA FDP RICE - ROTA 3 RUA ROBERTO SILVEIRA

(B) MELHOR E PIOR AJUSTE DA FDP RAYLEIGH - ROTA 3 RUA ROBERTO SILVEIRA

(C) MELHOR E PIOR AJUSTE DA FDP GAUSS - ROTA 3 RUA ROBERTO SILVEIRA

(D) MELHOR E PIOR AJUSTE DA FDP NAKAGAMI - ROTA 3 RUA ROBERTO SILVEIRA

(E) MELHOR E PIOR AJUSTE DA FDP WEIBULL - ROTA 3 RUA ROBERTO SILVEIRA FIGURA 23 - SETORES QUE MELHOR E PIOR SE AJUSTARAM A ROTA 3 - RUA ROBERTO SILVEIRA

Trecho 3	Quantidade total de setores no trecho: 162				
Total PDF que passou no Teste Qui	Gauss	Rayleigh	Rice	Nakagami	Weibull
(95%)	113	97	83	68	141
Total de vezes que a PDF passou no	Gauss	Rayleigh	Rice	Nakagami	Weibull
teste Qui com o menor valor	0	0	0	0	141
Managualar da Qui nava cada DDE	Gauss	Rayleigh	Rice	Nakagami	Weibull
Menor valor de Qui para cada PDF	21,76	13,52	30,78	60,01	8,56
Major valor do Qui para cada PDE	Gauss	Rayleigh	Rice	Nakagami	Weibull
Ivialor valor de Qui para cada PDF	111,33	97,95	110,03	108,83	111,76

TABELA 4 - COMPARATIVO DAS FDP'S PARA A ROTA 3 - RUA ROBERTO SILVEIRA

Os valores do teste qui-quadrado em cada setor referente a rota 3 (Rua Roberto Silveira) para as FDP's encontram-se no anexo IV.

Com base na Tabela 4, é possível verificar que as distribuições Weibull e Rayleigh foram as que apresentaram o menor valor para o teste qui-quadrado na rota 3 da Rua Roberto Silveira. Nesta rota, o sinal irá chegar no receptor basicamente através de reflexões, difrações e espalhamentos. Não há uma componente em visada superior as demais componentes originadas dos múltiplos percursos.

(A) MELHOR E PIOR AJUSTE DA FDP RICE - ROTA 4 RUA PRESIDENTE BACKER

(B) MELHOR E PIOR AJUSTE DA FDP RAYLEIGH - ROTA 4 RUA PRESIDENTE BACKER

(C) MELHOR E PIOR AJUSTE DA FDP GAUSS - ROTA 4 RUA PRESIDENTE BACKER

(D) MELHOR E PIOR AJUSTE DA FDP NAKAGAMI - ROTA 4 RUA PRESIDENTE BACKER

FIGURA 24- SETORES QUE MELHOR E PIOR SE AJUSTARAM A ROTA 4 - RUA PRESIDENTE BACKER

Trecho 4	Quantidade total de setores no trecho: 93				
Total PDF que passou no Teste Qui	Gauss	Rayleigh	Rice	Nakagami	Weibull
(95%)	89	85	78	70	90
Total de vezes que a PDF passou no	Gauss	Rayleigh	Rice	Nakagami	Weibull
teste Qui com o menor valor	3	4	12	1	70
Manaryalar da Qui nara cada DDE	Gauss	Rayleigh	Rice	Nakagami	Weibull
Menor valor de Qui para cada PDF	8,96	4,79	3,9	22,39	4,27
Majar valar da Qui para cada PDE	Gauss	Rayleigh	Rice	Nakagami	Weibull
ivialor valor de Qui para cada PDF	100,65	109,33	95,87	103,36	82,85

TABELA 5 - COMPARATIVO DAS FDP'S PARA A ROTA 4 - RUA PRESIDENTE BACKER

Os valores do teste qui-quadrado em cada setor referente a rota 4 (Rua Presidente Backer) para as FDP's encontram-se no anexo V.

Com base na Tabela 5, é possível constatar que as distribuições que melhor se ajustaram a rota 4 foram: Rice, Rayleigh e Weibull. Na parte inicial da trajetória, partindo da praia de Icaraí, percebe-se que a distribuição Rice é a melhor devido à presença da componente em visada direta que apresenta intensidade muito superior às componentes originadas dos múltiplos percursos. À medida que percorremos a Rua Presidente Backer, aumentamos à distância em relação ao transmissor e encontramos um maior número de obstáculos. Portanto, a distribuição de Rayleigh e Weibull passam a apresentar o melhor ajuste para os múltiplos percursos.

4.3. SONDAGEM EM BANDA ESTREITA

Nesta etapa da análise, foi realizada a sondagem do canal em banda estreita a partir dos dados de medições das rotas já mencionadas. A taxa de cruzamento de nível e a duração média do desvanecimento foram calculadas, para a função de densidade de probabilidade Rayleigh. Essas taxas foram comparadas com as respectivas taxas teóricas.

Foram selecionados alguns setores, de forma a não sobrecarregar o texto com imagens, que apresentaram o melhor valor do teste qui-quadrado para cada rota e os mesmos são apresentados a seguir (Figuras 25 a 28). A partir destes gráficos, é possível verificar em cada setor qual a distribuição que apresenta melhor aderência, comparando o resultado obtido através da curva estatística com os parâmetros de variação do canal.

Cabe informar que estes setores foram selecionados com o objetivo de representar o comportamento dos parâmetros de sondagem que são mais frequentes em cada um dos setores das rotas estudadas, ou seja, para dar uma noção geral da variação destes parâmetros de acordo com os níveis de desvanecimento rápido do sinal recebido.

(B) TAXA DE CRUZAMENTO DE NÍVEL E DURAÇÃO MÉDIA DE DESVANECIMENTO - SETOR 12

(C) TAXA DE CRUZAMENTO DE NÍVEL E DURAÇÃO MÉDIA DE DESVANECIMENTO - SETOR 14

(D) TAXA DE CRUZAMENTO DE NÍVEL E DURAÇÃO MÉDIA DE DESVANECIMENTO - SETOR 70 FIGURA 25- TAXA DE CRUZAMENTO DE NÍVEL E A DURAÇÃO MÉDIA DE DESVANECIMENTO -ROTA 1 PRAIA ICARAÍ

(A) TAXA DE CRUZAMENTO DE NÍVEL E DURAÇÃO MÉDIA DE DESVANECIMENTO - SETOR 8

(B) TAXA DE CRUZAMENTO DE NÍVEL E DURAÇÃO MÉDIA DE DESVANECIMENTO - SETOR 20

(C) TAXA DE CRUZAMENTO DE NÍVEL E DURAÇÃO MÉDIA DE DESVANECIMENTO - SETOR 31

FIGURA 26 - TAXA DE CRUZAMENTO DE NÍVEL E A DURAÇÃO MÉDIA DE DESVANECIMENTO - ROTA 2 RUA MARIZ E BARROS

(A) TAXA DE CRUZAMENTO DE NÍVEL E DURAÇÃO MÉDIA DE DESVANECIMENTO - SETOR 4

(B) TAXA DE CRUZAMENTO DE NÍVEL E DURAÇÃO MÉDIA DE DESVANECIMENTO - SETOR 102

(C) TAXA DE CRUZAMENTO DE NÍVEL E DURAÇÃO MÉDIA DE DESVANECIMENTO - SETOR 114

FIGURA 27 - TAXA DE CRUZAMENTO DE NÍVEL E A DURAÇÃO MÉDIA DE DESVANECIMENTO -ROTA 3 RUA ROBERTO SILVEIRA

(A) TAXA DE CRUZAMENTO DE NÍVEL E DURAÇÃO MÉDIA DE DESVANECIMENTO - SETOR 13

(B) TAXA DE CRUZAMENTO DE NÍVEL E DURAÇÃO MÉDIA DE DESVANECIMENTO - SETOR 15

(C) TAXA DE CRUZAMENTO DE NÍVEL E DURAÇÃO MÉDIA DE DESVANECIMENTO - SETOR 26

FIGURA 28 - TAXA DE CRUZAMENTO DE NÍVEL E A DURAÇÃO MÉDIA DE DESVANECIMENTO -ROTA 4 RUA PRESIDENTE BACKER

Com base nas Figuras 25 a 28, pode-se observar que os setores que apresentaram um predomínio da componente do sinal em visada direta tenderam a se aproximar do valor eficaz e, portanto, não sofreram um desvanecimento profundo. Já os setores onde não há uma componente dominante, ou seja, os multipercursos chegam em níveis semelhantes no receptor, percebe-se que os sinais tendem a se espalhar ao redor do valor eficaz da taxa de cruzamento de nível e a duração média do desvanecimento.

CAPÍTULO 5

CONCLUSÃO

Neste trabalho foram apresentadas análises adicionais ao trabalho descrito em [2] para os resultados de análises estatísticas da variabilidade do sinal e da caracterização do canal em banda estreita no bairro de Icaraí em Niterói, concentrando as medições no entorno da reitoria da UFF onde a antena transmissora foi instalada para transmitir na faixa 3,5 GHz.

A variabilidade do sinal propagado pelo canal rádio pode ser descrito através de específicas funções de distribuições estatísticas. Para o desvanecimento em larga escala (ou seja, desvanecimento lento), foi utilizada a função de densidade log-normal caracterizando o efeito de sombreamento no nível do sinal medido em uma dada separação Tx-Rx. Já para a variação em pequena escala do sinal com desvanecimento (ou seja, desvanecimento rápido), a modelagem se deu com base nas funções de distribuição: Gauss, Rayleigh, Rice, Nakagami e Weibull. Além da análise estatística do sinal, foi realizada a caracterização do canal através da taxa de cruzamento de nível e duração média do desvanecimento associada a função de densidade de probabilidade de Rayleigh.

No desvanecimento em larga escala, foram realizadas análises da perda no percurso, sabendo que a mesma é linear com a distância em escala logarítmica, buscouse traçar três retas de ajustes, com o objetivo se ter maior número de pontos medidos aderentes as retas e além desta análise, também foram encontrados os coeficientes da perda de percurso das semi-retas geradas para cada rota sondada. Com base nas semiretas encontradas, é possível verificar que as rotas transversais à distância Tx-Rx (Rota 2 e 4) apresentaram valores de atenuação, em função da distância, mais acentuados conforme visto na tabela 1, o que se justifica pelo fato de apresentarem um maior número de obstáculos no percurso e além de possuírem uma distância maior em relação ao transmissor, acarretando em uma queda mais elevada com relação ao sinal recebido. Além destas rotas, verificou-se que a segunda semi-reta que descreve o trecho da Rota 1 apresentou um alto fator atenuação podendo ser justificada devido a maior presença de objetos espalhadores de sinal (como por exemplo, maior número de veículos próximo ao cruzamento da reitoria da UFF, presença de árvores, alteração das alturas dos prédios na orla e entre outros). Após esta análise, foi realizado o aumento do expoente da perda de percurso (para terceiro grau) com o intuito de encontrar uma curva mais adequada com relação aos pontos medidos. Porém, verificou-se que nem todas as rotas apresentaram dados totalmente ajustados ao polinômio. Esta não adequabilidade aos pontos medidos pode ser ocasionado devido a uma certa variação nas alturas dos prédios ao longo do percurso, gerando assim ocasionais modificações nos obstáculos até o receptor.

Considerando o desvanecimento em pequena escala, foi realizada a média de todos os setores e verificada a variabilidade rápida do sinal ajustada à F.D.P Rayleigh. Percebeu-se que a curva de Rayleigh é mais acentuada no início do trajeto devido as componentes do multipercurso e ao longo do caminho a intensidade do sinal cai consideravelmente, conforme pôde ser verificado nas figuras 17 a 20.

Em uma análise posterior, com base nos valores medidos na região do entorno da reitoria, foram verificadas quais funções de densidade de probabilidade teóricas melhor se enquadravam para cada setor medido através do desvanecimento em pequena escala. Os resultados apresentados são referentes ao melhor e pior ajuste dos resultados, segundo o teste qui-quadrado, para cada rota considerando as FDP's mencionadas anteriormente. Para determinar se uma FDP teórica passou ou não no teste, deve-se verificar o valor encontrado é menor que o valor crítico tabelado do teste qui-quadrado.

Com base na análise gráfica e nas tabelas 2 a 5, foi possível constatar que a função de densidade de probabilidade que apresentou o menor grau de aderência aos sinais medidos e teóricos foi a distribuição de Nakagami. Isso é justificável devido ao grau de desvanecimento sofrido pelo sinal ao se propagar em um ambiente com muitos multipercursos podendo assim, acarretar em desvanecimento mais severo com o aumento das flutuações do sinal ou desvanecimento menos severo devido a diminuição das flutuações da intensidade do sinal.

Por último, foram calculadas as taxas de cruzamento de nível e duração média de desvanecimento, com base nos dados medidos, utilizando as fórmulas conhecidas para a distribuição teórica Rayleigh apresentadas no capítulo 2. Com base na análise das figuras 25 a 28, é possível constatar que para alguns setores houve uma adequação do comportamento da curva, em torno do seu valor eficaz, para os setores onde existe algum tipo de visibilidade em relação ao transmissor. Já os setores onde não há essa componente dominante do sinal em visada direta, percebeu-se um distanciamento do valor eficaz gerando um desvanecimento mais profundo do sinal.

Como sugestões de trabalhos futuros podem citar:

- Realizar novas medições na faixa de 3,5 GHz utilizando como cenário de estudo a interferência das TVROs (TV aberta por satélite, *television receive only*) com a futura implementação da quinta geração de internet móvel (5G);
- Realizar medições com outras frequências e com a variação da altura da antena.
 Com o intuito de comparar o desempenho das distribuições frente as outras frequências como por exemplo, as frequências utilizadas para o 5G.

BIBLIOGRAFIA

[1] Redes sem fio: Tecnologias de redes sem fio – Disponível em: <<u>https://www.teleco.com.br/tutoriais/tutorialredespbaid/pagina 3.asp</u>> - Acesso em: 13/07/2020

[2] Fonseca, Fábio José Barroso: Análise do comportamento faixa estreita do canal rádio móvel em 3,5GHz. 2011 – Dissertação de mestrado – Universidade Federal Fluminense, Niterói/RJ, 2011.

[3] PadrãoIEEE802.16[WiMax]–Disponívelem:<https://www.gta.ufrj.br/grad/04_2/wimax/wimax.html - Acesso em: 13/07/2020

[4] Anatel Aprova consulta pública para implementar o 5G – Disponível em: <<u>https://www.anatel.gov.br/institucional/component/content/article/171-</u>

manchete/2491-anatel-aprova-consulta-publica-para-licitar-faixas-de-frequenciaspara-o-5g> - Acesso em: 13/07/2020

[5] HAYKIN, Simon e MOHER, Michael: Sistemas Modernos de Comunicações WirelessBookman, 2008.

[6] Rappaport, Theodore S.: Comunicações sem fio – Princípios e práticas – 2ª edição – Prentice Hall, 2000.

[7] Da Costa, Renata Braz Falcão: Estudo e Simulação de Técnicas de Localização de Terminais em Ambientes Microcelulares, 2003 – Dissertação de Mestrado – PUC-Rio - Rio de Janeiro/RJ – 2003.

[8] Leão, Eduardo da Silva: Análise estatística da variabilidade do sinal rádio móvel em ambiente de vegetação, 2012. – Dissertação de mestrado – Universidade Federal fluminense – Niterói/RJ, 2012

[9] Stüber, Gordon L. : Principles of Mobile Communication – 2^ª Edição – <u>Kluwer</u> <u>Academic Publishers, 2002.</u>

[10] Recommendation ITU-R P.1057-1: Probability distributions relevant to radiowave propagation modelling (1994-2001).

[11] PARSONS, John David.: The mobile Radio Propagation Channel – 2nd edition. John Wiley & Sons LTD, 2000.

[12] Peppas, K.P., et. Al.: An Overview of the Physical Insight and the Various Performance Metrics of Fading Channels in Wireless Communication Systems – ResearchGate Publication – Chapter – February 2011.

[13] U. Dershand R. Rüeg: Simulations of the Time Frequency outdoor Mobile Radio Channel. IEEE Trans. Vehicular Technology, Vol. 42. No 3, August 1993.

[14] Weibull Distribution - Engineering Statistics Handbook – Disponível em: <https://www.itl.nist.gov/div898/handbook/eda/section3/eda3668.htm> Acesso em: 09/02/2020

[15] WEIBULL DISTRIBUTIONS AND THEIR APPLICATIONS - Springer Handbook MS ID: hb06-a2 – November 2005

[16] Shankar, P. Mohana: Fading and Shadowing in Wireless Systems – Springer, 2012

[17] Lavanya V., et al.: Fast fading mobile channel modeling for wireless communication
 ScieneDirect – Published by Elsevier – 2016, pp.777-781

[18] M. Nakagami: "The m-distribution - A general formula of intensity distribution of rapid fading," Statistical Methods in Radio Wave Propagation, pp. 3–36, 1960, W. G. Hoffman, Ed. Oxford, U.K.: Pergamon.

[19] Dias, Ugo Silva: Validação de Estatísticas de Ordem Superior para Canais com Desvanecimento Weibull e Nakagami-m. 2006 – Dissertação de mestrado -Universidade Estadual de Campinas, Campinas/SP, 2006.

[20] Noga, Krystyna Maria: "Estimation of Nakagami Distribution Parameters in describing a Fading Radio-Communication Channel" – Scientific Journal of Polish Naval Academy – 2016 (LVII) - DOI: 10.5604/0860889X.1202437

[21] BERTONI, Henry L.: Radio Propagation for Modern Wireless Systems. New Jersey : Prentice Hall PTR, 2000.

[22] Teste do qui-quadrado - Disponível em:http://www.leg.ufpr.br/lib/exe/fetch.php/disciplinas:ce001:teste_do_qui-quadrado.pdf - Acesso em: 10/07/2020

[23] Da Fonseca, Jairo Simon e Martins, Gilberto de Andrade: Curso de estatística – 6ªedição- São Paulo – Editora Atlas S.A., 2011

[24] Bussab, Wilton O. Morettin, Pedro A.: Estatística básica – 6ª edição – São Paulo – Saraiva, 2010.

80

[25] Meyer, Paul L.: Probabilidade Aplicações à Estatística – 2ª edição – Livros técnicos e científicos Editora

[26] Carvalho, Andréa Duarte: Caracterização experimental da rádio-propagação no interior de edifícios. 2008 – Dissertação de mestrado - Escola Politécnica da Universidade de São Paulo, São Paulo, 2008.

[27] Gonçalves, Juliana Valim Oliver: Variabilidade do Sinal, Banda de Coerência e Espalhamento Temporal em Ambiente de Rádio Propagação Móvel em 3,5GHz. 2009 – Dissertação de Mestrado – PUC-Rio, Rio de Janeiro,2009.

[28] Pinheiro, Júlio César de Mello: Caracterização de canais sem fio em ambientes generalizados de desvanecimento. 2012 – Publicação PPGENE.DM 476 A/12 – Dissertação de Mestrado – Universidade de Brasília, Brasília, 2012.

[29] Ramos, Glaucio Lopes: Medidas de rádio propagação em 3,5 GHz em ambientes urbanos: análise de perda de percurso e variabilidade. 2001 – Dissertação de Mestrado – PUC-Rio – Rio de Janeiro, 2001.

[30] Ribeiro, Antônio Marcelo Oliveira: Contribuições à caracterização estatística do canal de rádio móvel e estimação de parâmetros por máxima verossimilhança. 2013 – Tese de doutorado – Universidade Estadual de Campinas, Campinas/SP,2013.

[31] Roldão, João Eduardo Sebastião Gonçalves: Caracterização Bidimensional de um canal rádio Wimax. 2009 – Dissertação de mestrado - Instituto Superior de Engenharia de Lisboa, Lisboa, 2009.

[32] Silva, Rogerio Moreira Lima: Caracterização de Canal em 3,5GHz Usando Técnicas de Sondagem STDCC e OFDM – Tese doutorado – PUC, Abril 2011

[33] VIEIRA, Pedro Armando.: Análise da resposta em banda estreita de um canal marítimo na faixa de 3,5GHz. 2010 – Dissertação de Mestrado – Universidade Federal Fluminense, Niterói/RJ, 2010.

[34] Yacoub, Michel Daoud: The $\alpha - \mu$ Distribution: A physical fading model for the stacy distribution – IEEE Transactions on vehicular technology, VOL. 56, NO.

ANEXO

I – DISTRIBUIÇÃO QUI-QUADRADO

TABELA 6 - DISTRIBUIÇÃO QUI-QUADRADO - FONTE: BUSSAB, WILTON O. MORETTIN, PEDRO A. – ESTATÍSTICA BÁSICA

Graus deliberdade v		-	2	e	4	10	0	~	¢	0.	2	Ξ	2	13	7	15	16	17	18	19	8	21	3	23	2	25	26	27	28	8	8	
► X ₂	0,1%	10,827	13,815	16,266	18,467	20,515	22,457	24,322	26,125	27,877	29,588	31,264	32,909	34,528	36,123	37,697	39,252	40,790	42,312	43,820	45,315	46,797	48,268	49,728	51,179	52,620	54,052	55,476	56,893	58,302	59.703	0,1%
	0,2%	9,550	12,429	14,796	16,924	18,907	20,791	22,601	24,352	26,056	27,722	29,354	30,957	32,535	34,091	35,628	37,146	38,648	40,136	41,610	43,072	44,522	45,962	47,391	48,812	50,223	51,627	53,022	54,411	55,792	57,167	0,2%
*	22	6,635	9,210	11,345	13,277	15,086	16,812	18,475	20,090	21,666	23,209	24,725	26,217	27,688	29,141	30,578	32,000	33,409	34,805	36,191	37,566	38,932	40,289	41,638	42,980	44,314	45,642	46,963	48,278	49,598	50,892	29
	2%	5,412	7,824	9,837	11,668	13,388	15,033	16,622	18,168	19,679	21,161	22,618	24,054	25,472	26,873	28,259	29,633	30,995	32,346	33,687	35,020	36,343	37,659	38,968	40,270	41,566	42,856	44,140	45,419	46,693	47,962	2%
	2,5%	5,024	7,378	9,348	11,143	12,832	14,449	16,013	17,534	19,023	20,483	21,920	23,337	24,736	26,119	27,488	28,845	30,191	31,526	32,852	34,170	35,479	36,781	38,076	39,364	40,646	41,923	43,194	44,461	45,722	46.979	2,5%
	4%	4,218	6,438	8,311	10,026	11,644	13, 198	14,703	16,171	17,608	19,021	20,412	21,785	23,142	24,485	25,816	27,136	28,445	29,745	31,037	32,321	33,597	34,867	36,131	37,389	38,642	39,889	41,132	42,370	43,604	44,834	4%
= <i>p</i> . no texto.	5%	3,841	5,991	7,815	9,488	11,070	12,592	14,067	15,507	16,919	18,307	19,675	21,026	22,362	23,685	24,996	26,296	27,587	28,869	30,144	31,410	32,671	33,924	35,172	36,415	37,652	38,885	40,113	41,337	42,557	43,773	5%
drado ^p (Y > Y) al dada r	10%	2,706	4,605	6,251	7,779	9,236	10,645	12,017	13,362	14,684	15,987	17,275	18,549	19,812	21,064	22,307	23,542	24,769	25,989	27,204	28,412	29,615	30,813	32,007	33,196	34,382	35,563	36,741	37,916	39,087	40,256	10%
Qui-qua ais que /	20%	1,642	3,219	4,642	5,989	7,289	8,558	9,803	11,030	12,242	13,442	14,631	15,812	16,985	18,151	19,311	20,465	21,615	22,760	23,900	25,038	26,171	27,301	28,429	29,553	30,675	31,795	32,912	34,027	35,139	36,250	20%
ibuição x² (v) lores y, t roxima ở	30%	1,074	2,408	3,665	4,878	6,064	7,231	8,383	9,524	10,656	11,781	12,899	14,011	15,119	16,222	17,322	18,418	19,511	20/001	21,689	22,775	23,858	24,939	26,018	27,096	28,172	29,246	30,319	31,319	32,461	33,530	30%
$Y \sim \frac{Y}{V}$ dá os va use a apr	50%	0,455	1,386	2,366	3,357	4,351	5,348	6,346	7,344	8,343	9,342	10,341	11,340	12,340	13,339	14,339	15,338	16,338	17,338	18,338	19,337	20,337	21,337	22,337	23,337	24,337	25,336	26,336	27,336	28,336	29,336	50%
bela IV a tabela v > 30, u	20%	0,148	0,713	1,424	2,195	3,000	3,828	4,671	5,527	6,393	7,267	8,148	9,034	9,926	10,821	11,721	12,624	13,531	14,440	15,352	16,266	17,182	101,81	19,021	19,943	20,867	21,792	22,719	23,647	24,577	25,508	20%
Ta Corpo de a valores	80%	0,064	0,446	1,005	1,649	2,343	3,070	3,822	4,594	5,380	6,179	6,989	7,807	8,634	9,467	10,307	11,152	12,002	12,857	13,716	14,578	15,445	16,314	17,187	18,062	18,940	19,820	20,703	21,588	22,475	23,364	80%
Par	80%	910'0	0,211	0,584	1,064	1,610	2,204	2,833	3,490	4,168	4,865	5,578	6,304	7,042	2,790	8,547	9,312	10,085	10,865	11,651	12,443	13,240	14,041	14,848	15,659	16,473	17,292	18,114	18,939	19,768	20,599	80%
	95%	0,004	0,103	0,352	0,711	1,145	1,635	2,167	2,733	3,325	3,940	4,575	5,226	5,892	6,571	7,261	7,962	8,672	0,390	10,117	10,851	11,591	12,338	13,091	13,848	14,611	15,379	16,151	16,928	17,708	18,493	95%
	97,5%	100'0	0,051	0,216	0,484	0,831	1,237	1,690	2,180	2,700	3,247	3,816	4,404	5,009	5,629	6,262	6,908	7,564	8,231	8,906	9,591	10,283	10,982	11,688	12,401	13,120	13,844	14,573	15,308	16,047	16.791	97,5%
	98%	0,043	0,040	0,185	0,429	0,752	1,134	1,564	2,032	2,532	3,059	3,609	4,178	4,765	5,368	5,985	6,614	7,255	7,906	8,567	9,237	9,915	009/01	11,293	11,992	12,697	13,409	14,125	14,847	15,574	16,306	98%
	866 = 0	9100	0,020	0,115	0,297	0,554	0,872	1,239	1,646	2,088	2,558	3,053	3,571	4,107	4,660	5,229	5,812	6,408	7,015	7,633	8,260	8,897	9,542	10,196	10,856	11,524	12,198	12,879	13,565	14,258	14,953	266 = 0
Graus deliberdade v		-	N	3	च	5	÷	~	0	0.	2	Ξ	22	13	7	15	19	17	18	61	8	21	22	23	22	25	26	27	28	8	8	

II – ROTA 1 PRAIA ICARAÍ

TABELA 7 - RESULTADO DO TESTE QUI-QUADRADO PARA CADA FDP NOS SETORES DA ROTA 1

Setor	QUI Gauss	QUI Ray	QUI Rice	QUI Nak	QUI Wei
1	27,13	43,67	79,76	108,61	3,637E+01
2	23,25	36,26	51,18	NaN	3,287E+01
3	28,28	23,36	38,84	55,14	2,299E+01
4	18,07	28,48	46,61	30,36	3,121E+01
5	55,17	80,05	NaN	58,8	7,513E+01
6	17,14	27,08	41,18	28,79	3,238E+01
7	16,11	28,78	41,86	66,43	3,180E+01
8	36,83	43,27	58,51	37,35	5,407E+01
9	18,81	26,27	48,39	64,14	2,534E+01
10	39,82	53,3	100,24	27,47	5,759E+01
11	16,57	16,36	29,46	28,83	1,768E+01
12	9,36	9,82	17,21	29,57	1,206E+01
13	23,5	28,31	66,06	NaN	2,024E+01
14	7,33	11,65	21,31	34,26	1,267E+01
15	16,22	21,65	49,23	66,3	1,469E+01
16	48,04	67,18	NaN	62,09	6,635E+01
17	62,6	NaN	NaN	NaN	7,855E+01
18	69,3	NaN	NaN	NaN	8,442E+01
19	33,28	26,27	58,28	NaN	3,107E+01
20	63,83	110,21	NaN	NaN	1,019E+02
21	79,53	112,96	NaN	NaN	NaN
22	47,42	46,76	76,43	NaN	5,605E+01
23	NaN	NaN	NaN	NaN	NaN
24	104,66	NaN	NaN	NaN	NaN
25	NaN	NaN	NaN	NaN	NaN
26	NaN	NaN	NaN	NaN	NaN
27	NaN	NaN	NaN	NaN	NaN
28	NaN	NaN	NaN	NaN	NaN
29	NaN	NaN	NaN	NaN	NaN
30	NaN	NaN	NaN	NaN	NaN
31	NaN	NaN	NaN	NaN	NaN
32	NaN	NaN	NaN	NaN	NaN
33	NaN	NaN	NaN	NaN	NaN
34	NaN	NaN	NaN	NaN	NaN
35	NaN	NaN	NaN	NaN	NaN
36	NaN	NaN	NaN	NaN	NaN
37	33,86	46,82	67,18	87,11	5,958E+01
38	48,1	70,17	NaN	NaN	6,782E+01
39	10,6	15,59	21,08	63,63	2,362E+01
40	66,17	90,72	87,21	NaN	NaN
41	NaN	NaN	NaN	NaN	8,416E+01

Valores do teste Qui em cada setor para cada PDF: Gauss Rayleigh Rice Nakagami Weibull

42	42,7	39,78	50,66	NaN	5,851E+01
43	39 <i>,</i> 58	57,53	102,71	43,95	5,837E+01
44	47,24	81,01	NaN	NaN	7,669E+01
45	13,98	27,81	60,14	88,89	1,900E+01
46	NaN	NaN	NaN	NaN	NaN
47	NaN	NaN	NaN	NaN	NaN
48	NaN	NaN	NaN	NaN	NaN
49	NaN	NaN	NaN	NaN	NaN
50	NaN	NaN	NaN	NaN	NaN
51	NaN	NaN	NaN	NaN	NaN
52	NaN	NaN	NaN	NaN	NaN
53	43,93	67,04	NaN	NaN	6,562E+01
54	NaN	NaN	NaN	NaN	8,421E+01
55	NaN	NaN	NaN	NaN	NaN
56	NaN	NaN	NaN	NaN	NaN
57	NaN	NaN	NaN	52,07	NaN
58	50,38	NaN	NaN	NaN	4,998E+01
59	65,06	78,08	NaN	NaN	4,301E+01
60	47,29	86,25	NaN	NaN	6,181E+01
61	17,75	24,12	40,12	97,21	2,031E+01
62	56,63	93,62	NaN	NaN	7,941E+01
63	34	31,7	68,07	102,09	1,995E+01
64	80,99	76,58	NaN	NaN	5,834E+01
65	41,17	94,14	NaN	NaN	4,305E+01
66	59,32	62,95	55,24	80,55	7,940E+01
67	24,43	29,55	51,55	35,61	3,315E+01
68	30,26	33,37	60,74	NaN	2,316E+01
69	39,47	94,64	NaN	NaN	4,097E+01
70	39,78	55,41	97,99	26,66	6,167E+01
71	24,23	69,41	NaN	NaN	3,035E+01
72	70,21	NaN	NaN	NaN	NaN
73	NaN	NaN	NaN	NaN	NaN
74	NaN	NaN	NaN	NaN	NaN
75	NaN	NaN	NaN	NaN	NaN
76	NaN	NaN	NaN	NaN	NaN
77	NaN	NaN	NaN	NaN	NaN
78	NaN	NaN	NaN	NaN	NaN
79	NaN	NaN	NaN	NaN	NaN
80	NaN	NaN	NaN	NaN	NaN
81	NaN	NaN	NaN	NaN	NaN
82	NaN	NaN	NaN	NaN	NaN
83	NaN	NaN	NaN	NaN	NaN
84	NaN	NaN	NaN	NaN	NaN
85	NaN	NaN	NaN	NaN	NaN
86	NaN	NaN	NaN	NaN	NaN
87	NaN	NaN	NaN	NaN	NaN
88	NaN	NaN	NaN	NaN	NaN
89	NaN	NaN	NaN	NaN	NaN

90	NaN	NaN	NaN	NaN	NaN
91	NaN	NaN	NaN	NaN	NaN
92	NaN	NaN	NaN	NaN	NaN
93	NaN	NaN	NaN	NaN	NaN
94	NaN	NaN	NaN	NaN	NaN
95	NaN	NaN	NaN	NaN	NaN
96	NaN	NaN	NaN	NaN	NaN
97	NaN	NaN	NaN	NaN	NaN
98	NaN	NaN	NaN	NaN	NaN
99	NaN	NaN	NaN	NaN	NaN
100	NaN	NaN	NaN	NaN	NaN
101	NaN	NaN	NaN	NaN	NaN
102	NaN	NaN	NaN	NaN	NaN
103	NaN	NaN	NaN	NaN	NaN
104	NaN	NaN	NaN	NaN	NaN
105	NaN	NaN	NaN	NaN	NaN
106	NaN	NaN	NaN	NaN	NaN
107	NaN	NaN	NaN	NaN	NaN
108	NaN	NaN	NaN	NaN	NaN
109	NaN	NaN	NaN	NaN	7.594E+01
110	93,75	NaN	NaN	NaN	NaN
111	NaN	NaN	NaN	NaN	NaN
112	NaN	NaN	NaN	NaN	NaN
113	NaN	NaN	NaN	107.77	NaN
114	NaN	NaN	NaN	NaN	NaN
115	67 19	NaN	NaN	NaN	9 440F+01
116	NaN	NaN	NaN	NaN	NaN
117	NaN	NaN	NaN	111.74	NaN
118	NaN	NaN	NaN	NaN	NaN
119	NaN	NaN	NaN	NaN	NaN
120	NaN	NaN	NaN	NaN	NaN
121	NaN	NaN	NaN	NaN	NaN
122	NaN	NaN	NaN	NaN	NaN
123	46 35	NaN	NaN	NaN	6 523E+01
124	76.06	NaN	NaN	NaN	NaN
125	NaN	NaN	NaN	NaN	NaN
126	NaN	NaN	NaN	NaN	NaN
127	NaN	NaN	NaN	NaN	NaN
128	NaN	NaN	NaN	NaN	NaN
129	87.88	NaN	NaN	NaN	NaN
130	NaN	NaN	NaN	NaN	NaN
131	NaN	NaN	NaN	NaN	NaN
132	17 56	31 59	63.98	86 38	2 744F+01
133	38,16	52.46	52,59	38,86	6,933F+01
134	96.69	NaN	NaN	NaN	NaN
135	NaN	NaN	NaN	NaN	NaN
136	NaN	NaN	NaN	NaN	NaN
137	NaN	NaN	NaN	NaN	NaN
±0,	i vui v	i vai v	i vai v	i vai v	INCIN

138	NaN	NaN	NaN	NaN	NaN
139	NaN	NaN	NaN	NaN	NaN
140	111,01	NaN	NaN	NaN	NaN
141	39,26	60,88	102,12	NaN	5,157E+01
142	NaN	NaN	NaN	NaN	NaN
143	NaN	NaN	NaN	NaN	NaN
144	NaN	NaN	NaN	NaN	NaN
145	NaN	NaN	NaN	NaN	NaN
146	70,82	NaN	NaN	NaN	1,034E+02
147	16,95	26,17	39,02	48,95	3,016E+01
148	90,47	NaN	NaN	NaN	NaN
149	98,56	NaN	NaN	NaN	NaN
150	103,41	NaN	NaN	NaN	NaN
151	39,35	70,2	NaN	NaN	5,274E+01
152	NaN	NaN	NaN	NaN	NaN
153	32,51	99,61	NaN	NaN	4,800E+01
154	38,49	60,06	NaN	63,95	5,624E+01
155	62,13	63,89	NaN	NaN	6,007E+01
156	54,05	NaN	NaN	NaN	8,540E+01
157	NaN	NaN	NaN	NaN	NaN
158	NaN	NaN	NaN	NaN	NaN
159	86,54	NaN	NaN	NaN	9,583E+01
160	38,14	87,11	NaN	NaN	4,474E+01
161	90,53	NaN	NaN	NaN	NaN
162	NaN	NaN	NaN	82,8	NaN
163	48,78	88,08	NaN	NaN	6,451E+01
164	NaN	NaN	NaN	NaN	NaN
165	NaN	NaN	NaN	NaN	NaN
166	NaN	NaN	NaN	NaN	NaN
167	NaN	NaN	NaN	NaN	NaN
168	NaN	NaN	NaN	NaN	NaN
169	NaN	NaN	NaN	NaN	NaN
170	NaN	NaN	NaN	NaN	NaN
171	NaN	NaN	NaN	NaN	NaN

III – ROTA 2 RUA MARIZ E BARROS

TABELA $\mathbf{8}$ - RESULTADO DO TESTE QUI-QUADRADO PARA CADA FDP NOS SETORES DA ROTA $\mathbf{2}$

Setor	QUI Gauss	QUI Ray	QUI Rice	QUI Nak	QUI Wei
1	99,41	82,37	NaN	NaN	5,317E+01
2	72,56	58,31	31,46	NaN	9,115E+01
3	20,63	23,73	19,84	100,27	3,763E+01
4	15,17	15,28	27,37	29,47	1,636E+01
5	23,4	34,62	27,21	19,05	4,928E+01
6	36,69	44,22	19,96	95,35	7,066E+01
7	9,88	8,35	2,07	18,34	1,600E+01
8	4,26	3,13	5,04	15,47	6,377E+00
9	12,89	5,97	11,93	27,78	6,710E+00
10	14,99	7,96	15,58	38,91	7,577E+00
11	29,56	38,52	36,63	20,9	4,979E+01
12	31,89	17,69	24,6	48,23	1,933E+01
13	36,47	35,54	14,42	54,78	5,519E+01
14	41,87	30,78	22,87	57,59	4,042E+01
15	32,31	24,56	13	51,54	3,730E+01
16	22,9	23,78	62,1	93,75	9,237E+00
17	30,06	20,85	45,76	85,64	1,276E+01
18	45	37,91	85,6	NaN	1,991E+01
19	24,59	15,67	35,01	66,98	9,957E+00
20	19,96	14,54	35,94	65,55	7,556E+00
21	8,56	6	2,56	18,23	1,182E+01
22	22,63	19,95	8,54	33,7	3,091E+01
23	16,33	14,36	5,12	26,32	2,492E+01
24	18,5	10,72	21,06	48,9	9,021E+00
25	7,12	4,54	10,95	23,55	5,321E+00
26	24,54	20,94	9,33	34,55	3,231E+01
27	22,28	13,24	26,67	57,43	1,022E+01
28	12,66	7,97	5,29	27,38	1,301E+01
29	12,54	6,62	10,15	32,2	8,268E+00
30	17,42	10,76	29,22	50,74	5,393E+00
31	16,23	9,49	24,33	45,58	5,869E+00
32	22,16	12,81	28,42	55,1	8,802E+00
33	25,39	16,39	35,01	68,42	1,100E+01
34	14,37	8,06	9,68	33,78	1,072E+01
35	14,47	7,47	12,31	35,57	8,436E+00
36	24,94	16,13	35,3	68,61	1,046E+01
37	14,89	8,38	16,23	40,37	7,883E+00
38	23,98	14,42	29,59	61,56	1,062E+01
39	13,39	7,37	8,39	31,44	1,033E+01
40	22,96	14,51	30,75	63,8	1,010E+01
41	82,84	85,11	NaN	NaN	4,483E+01

Valores do teste Qui em cada setor para cada PDF: Gauss Rayleigh Rice Nakagami Weibull

42	55,76	46,97	98,76	NaN	2,747E+01
43	78,48	77,36	NaN	NaN	4,173E+01
44	20.64	12.62	28.03	56.51	8.590E+00
45	28.09	18.66	40.22	77.67	1.201E+01
46	14.02	7.21	12.35	34.64	8.053E+00
47	22.8	14.05	28.3	60.63	1.059E+01
48	29.27	19.14	40.22	79.16	1.276E+01
49	27,96	19.02	39.88	81.28	1,248F+01
50	27,22	17.44	37.45	72,49	1,154F+01
51	28.64	19.35	41.84	79,59	1,223E+01
52	24 5	15 59	33 92	66 68	1 031F+01
53	22.75	14.37	32,13	63.03	9,266F+00
54	36.82	26.45	55.39	107.94	1.669E+01
55	28 55	19 13	41 11	79 39	1 225E+01
56	37.18	27.21	57.39	110,99	1.686F+01
57	21 49	12.9	26.24	56.63	9 889F+00
58	21,13	18 36	39.68	77.2	1 172F+01
59	24,5	15.81	34,29	68.27	1.040F+01
60	28.43	19.6	42 78	81.2	1 210E+01
61	26,43	17	37 42	71 54	1 082F+01
62	31.95	22.48	48.62	92 11	1 381F+01
63	36.9	26 55	55 61	109 14	1 673E+01
64	28.16	19.66	43 53	82 11	1 182F+01
65	30 33	21 14	44 82	88 34	1 342F+01
66	30,42	20.27	42.48	83.02	1.339F+01
67	22,32	13.95	31.85	60.64	8.842E+00
68	33.35	23.39	49.2	95.52	1.490F+01
69	27.25	19.09	42.38	80.98	1.142E+01
70	23.62	14.71	32.89	63.33	9.528E+00
71	31.32	22.15	47.28	92.36	1.379E+01
72	26.61	17.06	37	71.68	1.113E+01
73	31.39	21.27	45.32	86.81	1.362E+01
74	27.44	18.4	40.25	77.43	1.152E+01
75	25.49	16.66	36.69	71.39	1.059E+01
76	28.85	19.28	41.42	79.65	1.234E+01
77	25.66	16.45	35.34	69.76	1.091E+01
78	37.03	26.99	57.22	109.03	1.664E+01
79	26.52	17.75	39.03	75.05	1.110E+01
80	29,42	20.37	43.84	85.99	1.272E+01
81	30,97	20,83	44,37	85,22	1,340E+01
82	31.25	21.56	46	89.02	1.359E+01
83	29,21	19,44	41,86	80,29	1,244E+01
84	32,03	22,43	48,29	91,12	1,387E+01
85	29,25	20,59	45,44	84,5	1,239E+01
86	31,6	21,36	44,46	87,73	1,408E+01
87	28,18	18,36	38,34	, 76,48	1,243E+01
88	21,57	12,92	26,58	56,88	9,741E+00
89	29,27	19,44	40,98	80,83	1,278E+01

90	29,37	19,04	39,4	78,4	1,300E+01
91	27,26	17,75	38,36	73,48	1,152E+01
92	22,38	13,77	29,58	60,51	9,568E+00
93	21,17	12,56	27,28	55,42	8,918E+00
94	28,24	18,6	40,37	76,23	1,190E+01
95	24,4	15,39	33,22	65,94	1,032E+01
96	31,67	22,16	47,19	91,45	1,393E+01
97	22,47	14,44	32,44	63,24	9,186E+00
98	19,32	11,6	25,76	53,29	8,088E+00
99	22,73	14,08	30,16	60,89	9,802E+00
100	22,28	13,7	30,14	59,78	9,233E+00
101	26,32	16,73	34,78	70,53	1,166E+01
102	25,29	15,84	33,32	66,78	1,100E+01
103	25,69	16,77	36,54	71,33	1,082E+01
104	28,59	19,79	43,05	82,43	1,227E+01
105	29,86	20,23	43,28	83,47	1,291E+01
106	34,58	24,68	52,32	100,75	1,539E+01
107	28,07	18,34	39,26	76,06	1,201E+01
108	28,16	19,31	42,15	81,22	1,196E+01
109	34,14	24,36	52,27	98,19	1,497E+01
110	30,17	20,48	43,52	85,26	1,315E+01
111	31,14	21,79	47,26	89,01	1,340E+01
112	30,53	20,93	44,91	86,84	1,318E+01
113	33,21	23,95	51,07	99,27	1,472E+01
114	24,35	15,37	33,88	65,59	1,000E+01
115	27,6	18,29	39,38	76,55	1,182E+01
116	37,23	27,91	60,94	111,21	1,629E+01
117	27,69	18,97	42,72	78,91	1,123E+01
118	43,66	33,75	72,79	NaN	1,971E+01
119	36,84	27,55	59,89	110,76	1,618E+01
120	48,58	39,59	84,92	NaN	2,279E+01

IV – ROTA 3 RUA ROBERTO SILVEIRA

TABELA 9 - RESULTADO DO TESTE QUI-QUADRADO PARA CADA FDP NOS SETORES DA ROTA 3

Setor	QUI Gauss	QUI Ray	QUI Rice	QUI Nak	QUI Wei
1	34,13	24,45	51,98	100,38	1,518E+01
2	30,62	20,87	44,68	85,93	1,326E+01
3	28,21	18,85	41,38	78,38	1,173E+01
4	21,76	13,52	31,01	60,08	8,562E+00
5	30,57	20,82	44,43	85,35	1,330E+01
6	26,17	16,88	36,77	71,09	1,095E+01
7	28,93	19,46	41,77	80,83	1,246E+01
8	35,2	25,17	53,47	102,79	1,563E+01
9	34,55	24,46	51,64	99,75	1,544E+01
10	34,12	24,38	51,96	98,77	1,515E+01
11	29,45	19,91	43,35	81,15	1,243E+01
12	34,6	24,22	51,54	97,87	1,518E+01
13	25,54	16,86	37,64	71,75	1,041E+01
14	30,92	21,21	45,43	87,68	1,338E+01
15	30,13	20,59	44,21	85,37	1,301E+01
16	40,55	30,41	64,05	NaN	1,861E+01
17	47,4	37,56	78,72	NaN	2,258E+01
18	34,34	24,15	50,42	98,66	1,549E+01
19	68,38	61,78	NaN	NaN	3,486E+01
20	NaN	NaN	NaN	NaN	1,024E+02
21	29,01	19,53	42,19	80,47	1,240E+01
22	57,37	48,18	101,45	NaN	2,821E+01
23	32,93	23,66	50,38	97,86	1,464E+01
24	NaN	NaN	NaN	NaN	NaN
25	30,89	21,61	46,89	88,05	1,329E+01
26	36,08	25,9	54,61	105,7	1,619E+01
27	29,7	20,27	44,15	83,49	1,261E+01
28	24,58	15,25	33,15	64,95	1,019E+01
29	27,53	18,02	38,66	75,08	1,177E+01
30	22,52	14,71	33,64	64,9	8,983E+00
31	25,91	17,3	38,56	72,96	1,071E+01
32	32,84	23,24	49,08	96,52	1,466E+01
33	NaN	NaN	NaN	NaN	1,010E+02
34	27,41	17,71	38,03	73,97	1,162E+01
35	35,97	26	55,15	105,77	1,609E+01
36	42,84	32,65	68,88	NaN	1,981E+01
37	34,73	25,33	54,47	103,48	1,533E+01
38	46,57	37,86	80,29	NaN	2,202E+01
39	96,87	NaN	NaN	NaN	5,694E+01
40	NaN	NaN	NaN	NaN	NaN

Valores do teste Qui em cada setor para cada PDF: Gauss Rayleigh Rice Nakagami Weibull

41	NaN	NaN	NaN	NaN	NaN
42	NaN	NaN	NaN	NaN	1,118E+02
43	96,08	NaN	NaN	NaN	5,652E+01
44	69,19	64,37	NaN	NaN	3,565E+01
45	63,1	56,34	NaN	NaN	3,178E+01
46	NaN	NaN	NaN	NaN	1,061E+02
47	NaN	NaN	NaN	NaN	NaN
48	25	15.72	34.04	66.97	1.049E+01
49	24	15.27	32.09	65.52	1.065E+01
50	104.2	NaN	NaN	NaN	6.359E+01
51	76.45	76.68	NaN	NaN	4.068F+01
52	69.06	65.22	NaN	NaN	3.562F+01
53	109.9	NaN	NaN	NaN	6 924F+01
54	NaN	NaN	NaN	NaN	7 528E+01
55	96.88	NaN	NaN	NaN	5 821E+01
56	75.89	76.87	NaN	NaN	4 045E+01
57	NaN	70,87 NaN	NaN	NaN	9 021E+01
58	NaN	NaN	NaN	NaN	0 /26E+01
50	102.00	NaN	NaN	NaN	6 2505±01
60	200,99		Nan	NaN	4 4905+01
61	02,90	00,07	INdin	NaN	4,409E+01
63	83,43	89,2 NaN	NaN	Nan	4,571E+01
62	Nain	Nan	Nan	NaN	8,467E+01
63	107,28	NaN	NaN	NaN	6,890E+01
64 CF	NaN	NaN	NaN	NaN	8,1/6E+01
65	NaN	NaN	NaN	NaN	1,093E+02
66	NaN	NaN	NaN	NaN	9,604E+01
67	NaN	NaN	NaN	NaN	9,419E+01
68	NaN	NaN	NaN	NaN	7,988E+01
69	NaN	NaN	NaN	NaN	NaN
70	NaN	NaN	NaN	NaN	8,812E+01
71	NaN	NaN	NaN	NaN	1,020E+02
72	NaN	NaN	NaN	NaN	NaN
73	NaN	NaN	NaN	NaN	1,000E+02
74	NaN	NaN	NaN	NaN	9,329E+01
75	108,56	NaN	NaN	NaN	7,039E+01
76	NaN	NaN	NaN	NaN	NaN
77	96,14	NaN	NaN	NaN	5,646E+01
78	NaN	NaN	NaN	NaN	NaN
79	99,43	NaN	NaN	NaN	5,940E+01
80	68,54	63,1	NaN	NaN	3,516E+01
81	NaN	NaN	NaN	NaN	7,414E+01
82	NaN	NaN	NaN	NaN	NaN
83	NaN	NaN	NaN	NaN	NaN
84	77,14	76,32	NaN	NaN	4,097E+01
85	NaN	NaN	NaN	NaN	9,175E+01
86	87,69	97,95	NaN	NaN	4,903E+01
87	NaN	NaN	NaN	NaN	NaN
88	NaN	NaN	NaN	NaN	9,730E+01

89	39,02	28,57	59,76	NaN	1,785E+01
90	47,04	37,19	78,3	NaN	2,221E+01
91	60,92	51,67	108,26	NaN	3,034E+01
92	60,13	52,07	110,03	NaN	2,992E+01
93	NaN	NaN	NaN	NaN	1,030E+02
94	24,97	16,63	37,41	71,33	1,017E+01
95	29,14	19,68	42,13	81,87	1,262E+01
96	NaN	NaN	NaN	NaN	NaN
97	NaN	NaN	NaN	NaN	8,383E+01
98	NaN	NaN	NaN	NaN	NaN
99	NaN	NaN	NaN	NaN	8,374E+01
100	36,28	26,76	57,59	108,26	1,609E+01
101	27,39	18,35	40,08	76,45	1,154E+01
102	22,07	13,64	30,78	60,01	8,862E+00
103	33,28	23,05	48,62	94,79	1,470E+01
104	28,54	19,49	42,47	81,83	1,211E+01
105	34,9	24,6	51,99	100,22	1,553E+01
106	31,85	22,83	49,55	93,78	1,379E+01
107	29,13	19,72	42,52	81,81	1,250E+01
108	22,29	14,24	32,53	61,9	8,921E+00
109	23,36	15,2	34,22	66,76	9,484E+00
110	31	21,24	45,25	88,46	1,348E+01
111	30,88	21	44,91	86,71	1,335E+01
112	30,63	20,6	44,09	84,04	1,315E+01
113	28,81	19,36	41,86	80,7	1,226E+01
114	26,15	16,33	34,56	68,94	1,119E+01
115	29,52	20,22	43 <i>,</i> 83	83,73	1,265E+01
116	29,87	20,26	44,03	83,8	1,266E+01
117	27,74	18,46	40,08	76,97	1,172E+01
118	33,47	23,66	49,97	96,55	1,494E+01
119	36,26	26,72	57,28	108,83	1,615E+01
120	49,82	39,23	81,64	NaN	2,391E+01
121	30,48	20,67	44,57	84,32	1,305E+01
122	NaN	NaN	NaN	NaN	8,830E+01
123	29,18	19,53	41,6	80,96	1,263E+01
124	30,5	20,77	44,38	84,96	1,322E+01
125	44,09	34,17	71,87	NaN	2,061E+01
126	43,8	33,68	71,19	NaN	2,026E+01
127	28,27	18,99	41,64	79,1	1,186E+01
128	29,3	20,47	44,69	85,07	1,252E+01
129	32,24	22,94	49,17	94,25	1,415E+01
130	34,91	24,75	52,27	101,21	1,558E+01
131	85,54	92	NaN	NaN	4,734E+01
132	27,09	17,5	37,29	73,4	1,162E+01
133	39,08	29,16	62,31	NaN	1,755E+01
134	32,14	21,92	46,59	89,24	1,403E+01
135	44,46	33,69	70,5	NaN	2,071E+01
136	23,86	14,85	32,68	63,82	9,800E+00

137	66,49	59,97	NaN	NaN	3,386E+01
138	NaN	NaN	NaN	NaN	NaN
139	30,11	20,82	45,23	85,88	1,285E+01
140	32,64	23,08	49,62	95,12	1,420E+01
141	35,88	26,12	55,59	105,91	1,605E+01
142	27,83	18,56	40,54	77,15	1,168E+01
143	NaN	NaN	NaN	NaN	8,844E+01
144	109,95	NaN	NaN	NaN	7,134E+01
145	93,5	NaN	NaN	NaN	5,481E+01
146	99,71	NaN	NaN	NaN	5,963E+01
147	23,96	15,53	34,97	66,62	9,686E+00
148	NaN	NaN	NaN	NaN	NaN
149	106,07	NaN	NaN	NaN	6,465E+01
150	NaN	NaN	NaN	NaN	NaN
151	NaN	NaN	NaN	NaN	NaN
152	99,53	NaN	NaN	NaN	5,883E+01
153	NaN	NaN	NaN	NaN	NaN
154	NaN	NaN	NaN	NaN	NaN
155	NaN	NaN	NaN	NaN	NaN
156	NaN	NaN	NaN	NaN	NaN
157	NaN	NaN	NaN	NaN	7,846E+01
158	NaN	NaN	NaN	NaN	1,026E+02
159	81,03	83,26	NaN	NaN	4,354E+01
160	NaN	NaN	NaN	NaN	1,024E+02
161	111,33	NaN	NaN	NaN	7,170E+01
162	44,91	35,33	74,77	NaN	2,101E+01

V – ROTA 4 RUA PRESIDENTE BACKER

TABELA 10 - RESULTADO DO TESTE QUI-QUADRADO PARA CADA FDP NOS SETORES DA ROTA 4

Valores do teste Qui em cada setor para cada PDF: Gauss Rayleigh Rice Nakagami Weibull						
Setor	QUI Gauss	QUI Ray	QUI Rice	QUI Nak	QUI Wei	
1	59,07	68,65	NaN	54,55	6,535E+01	
2	NaN	NaN	NaN	NaN	NaN	
3	31,69	39,78	46,51	36,63	5,196E+01	
4	28,46	24,53	37,62	38,38	2,836E+01	
5	28,24	45,89	66,32	94,01	4,351E+01	
6	97,12	NaN	NaN	NaN	7,285E+01	
7	NaN	NaN	NaN	NaN	NaN	
8	NaN	NaN	NaN	NaN	NaN	
9	86,41	NaN	NaN	NaN	7,307E+01	
10	10,5	11,32	17,66	38,11	1,245E+01	
11	30,44	21,77	45,12	53,33	1,886E+01	
12	19,19	11,26	21,92	50,91	9,443E+00	
13	10,61	4,79	12,81	29,52	4,272E+00	
14	12,73	5,83	9,76	27,54	7,489E+00	
15	14,32	13,6	4,2	22,39	2,326E+01	
16	13,19	8,62	5,05	27,14	1,421E+01	
17	20,88	12,68	28,88	56,75	8,348E+00	
18	8,96	5,91	4,92	23,55	1,017E+01	
19	10,86	5,07	12,09	30,52	4,981E+00	
20	35,2	24,32	16,17	59,12	3,534E+01	
21	30,61	29,29	13,4	39,51	4,371E+01	
22	18,55	14,24	7,36	32,75	2,207E+01	
23	21,02	15,34	8	32,46	2,398E+01	
24	28,26	23,91	10,45	40,95	3,735E+01	
25	13,8	11,65	3,9	24,41	2,002E+01	
26	17,95	12,15	29,94	54,71	7,181E+00	
27	16,19	10,75	6,64	30,37	1,675E+01	
28	17,55	10,68	9,85	36,67	1,471E+01	
29	22,82	14,25	31,64	61,34	9,399E+00	
30	19,71	13,32	30,34	60,88	8,443E+00	
31	38,87	28,63	61,93	NaN	1,704E+01	
32	25,16	17,33	41,03	73,68	9,573E+00	
33	26,91	18,56	42,9	77,56	1,058E+01	
34	23,13	14,58	30,54	63,32	1,033E+01	
35	22,33	15,58	38,52	68,41	8,063E+00	
36	19,5	11,29	20,53	49,87	1,015E+01	
37	11,14	7,09	4,27	24,44	1,229E+01	
38	19,32	11,11	13,81	42,75	1,326E+01	
39	20,84	12,94	29,64	58,55	8,277E+00	
40	27,39	17,54	35,62	73,56	1,246E+01	

41	27,44	18,06	40,03	74,57	1,127E+01
42	23,56	15,19	33,05	65,98	1,000E+01
43	21,65	13,02	27,02	57,69	9,658E+00
44	16,56	9,17	14,37	40,17	9,987E+00
45	31,25	20,55	41,31	84,45	1,436E+01
46	24	14,39	29,9	61,38	1,045E+01
47	26,7	17,83	38,9	75,3	1,125E+01
48	29,22	20,78	47,73	84,75	1,171E+01
49	20,7	12,68	25,07	55,66	1,008E+01
50	23,96	15	31,94	64,64	1,033E+01
51	27,02	17,36	35,7	73,12	1,209E+01
52	23.17	14.62	32.64	63.52	9.463E+00
53	37.8	28.03	60.21	NaN	1.680E+01
54	32.98	23.57	51.19	95.8	1.426E+01
55	33.05	22.56	47.61	92,11	1,450F+01
56	23.49	14.8	31.04	63 12	1 048F+01
57	20,40	20.84	44 24	85.95	1 344E+01
58	33.07	23,57	50 79	95 73	1,344C+01
59	24.02	15 11	20,75	65.26	1,438L101
55 60	24,03	10.07	J2,33 41 50	03,20	1,0321+01
61	30,30	15,57	41,39	62,06	1,3435+01
62	25,00	10,24	55,91	00,91	1,0500+01
62	28,78	20,34	44,82	83,72	1,224E+01
03	30,65	20,59	43,36	84,65	1,347E+01
64	24,53	15,66	33,46	67,42	1,056E+01
65	29	19,5	42,34	80,08	1,230E+01
66	24,65	16,1	35,98	68,98	1,006E+01
67	39,33	27,69	55,23	NaN	1,867E+01
68	32,47	22,4	46,95	92,86	1,449E+01
69	18,26	10,72	25,17	50,25	7,100E+00
70	100,65	NaN	NaN	NaN	5,961E+01
71	49,45	38,76	80,79	NaN	2,358E+01
72	75,19	69,35	NaN	NaN	3,921E+01
73	33,12	22,86	48,53	93,18	1,452E+01
74	40,64	31,13	66,38	NaN	1,854E+01
75	90,48	102,5	NaN	NaN	5,112E+01
76	31,24	22,39	48,95	91,96	1,342E+01
77	32,47	22,45	48,15	91,46	1,403E+01
78	28,4	18,46	39,48	76,27	1,212E+01
79	48,28	38,5	81,01	NaN	2,296E+01
80	69,69	67,49	NaN	NaN	3,618E+01
81	54,91	45,21	95,87	NaN	2,636E+01
82	41,03	31,16	67,22	NaN	1,839E+01
83	NaN	NaN	NaN	NaN	8,285E+01
84	68,34	64,08	NaN	NaN	3,498E+01
85	92.57	109.33	NaN	NaN	5,326E+01
86	76.66	78.75	NaN	NaN	4.101E+01
87	96.45	NaN	NaN	NaN	5.751E+01
88	32.93	23.2	49.25	95.21	1.454E+01
	/			/	_,

93	34,39	25,17	53,99	103,36	1,524E+01
92	31,6	22,79	49,33	94,26	1,378E+01
91	39,87	29,54	61,8	NaN	1,836E+01
90	25,12	16,29	36,39	69,55	1,019E+01
89	27,14	17,85	39,08	74,53	1,132E+01